
Exploring Dataframes (Part 2 of 2)

Chapter 6.

This chapter continues exploring dataframes. It provides an insightful look into their advan-
tages over traditional data frames, integral to the tidyverse suite. Tibbles streamline data
handling with features like partial data display for large sets, consistent structure during sub-
setting, support for non-standard names, and transparent data type management.

It also explores the dplyr package, a key part of tidyverse, highlighting its functions (e.g.,
filter(), select(), arrange(), mutate(), summarise()) that simplify data manipulation.
Combined with the pipe operator %>%, these functions offer an efficient, readable workflow.

Using the mtcars dataset as an example, the chapter demonstrates transforming datasets
into tibbles, applying dplyr functions for data exploration, and generating new variables.
Additional functions like rename(), group_by(), slice(), transmute(), pull(), and
n_distinct() are also discussed, showcasing their specific roles in data processing. Overall,
thisd chapter effectively highlights the practicality and efficiency of tibbles and dplyr in
data analysis, enhancing accessibility and ease in data science tasks.

tibbles

A tibble is essentially an updated version of the conventional data frame, providing more
flexible and effective data management features.

Tibbles, are a component of the tidyverse suite, a collection of R packages geared towards
making data science more straightforward. They share many properties with dataframes but
also offer unique benefits that enhance our ability to work with data.

1. Printing: When a tibble is printed, only the initial ten rows and the number of columns
that fit within our screen’s width are displayed. This feature becomes particularly useful
when dealing with extensive datasets having multiple columns, enhancing the data’s
readability.

2. Subsetting: Unlike conventional data frames, subsetting a tibble always maintains its
original structure. Consequently, even when we pull out a single column, it remains as
a one-column tibble, ensuring a consistent output type.
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3. Data types: tibbles offer a transparent approach towards data types. They avoid
hidden conversions, ensuring that the output aligns with our expectations.

4. Non-syntactic names: tibbles support columns having non-syntactic names (those
not following R’s standard naming rules), which is not always the case with standard
data frames.

We consider tibbles to be a vital part of our data manipulation arsenal, especially when
working within the tidyverse ecosystem. [1] [3]

The dplyr package

The dplyr package is very useful when we are dealing with data manipulation tasks (Wickham
et al., 2021). This package offers us a cohesive set of functions, frequently referred to as “verbs,”
that are designed to facilitate common data manipulation activities. Below, we review some
of the key “verbs” provided by the dplyr package:

1. filter(): When we want to restrict our data to specific conditions, we can use filter().
For instance, this function allows us to include only those rows in our dataset that fulfill
a condition we specify.

2. select(): If we are interested in retaining specific variables (columns) in our data,
select() is our function of choice. It is particularly useful when we have datasets with
many variables, but we only need a select few.

3. arrange(): If we wish to reorder the rows in our dataset based on our selected variables,
we can use arrange(). By default, arrange() sorts in ascending order. However, we
can use the desc() function to sort in descending order.

4. mutate(): To create new variables from existing ones, we utilize the mutate() function.
It is particularly helpful when we need to conduct transformations or generate new
variables that are functions of existing ones.

5. summarise(): To produce summary statistics of various variables, we use summarise().
We frequently use it with group_by(), enabling us to calculate these summary statistics
for distinct groups within our data.

Moreover, one of the significant advantages of dplyr is the ability to chain these functions
together using the pipe operator %>% for a more streamlined and readable data manipulation
workflow. [2] [3]
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The pipe operator %>%

1. The %>% operator, colloquially known as the “pipe” operator, plays a vital role in en-
hancing the effectiveness of the dplyr package.

2. The purpose of this operator is to facilitate a more readable and understandable chaining
of multiple operations.

3. In a typical scenario in R, when we need to carry out multiple operations on a data
frame, each function call must be nested within another. This could lead to codes that
are difficult to comprehend due to their complex and nested structure.

4. However, the pipe operator comes to our rescue here. It allows us to rewrite these nested
operations in a linear, straightforward manner, greatly enhancing the readability of our
code. [2] [3]

Illustration: Using dplyr on mtcars data

Loading required R packages

# Load the required libraries, suppressing annoying startup messages
library(dplyr, quietly = TRUE, warn.conflicts = FALSE)

Aside: When we load the dplyr package using library(dplyr), R displays messages
indicating that certain functions from dplyr are masking functions from the stats and
base packages. We could instead prevent the display of package startup messages by using
suppressPackageStartupMessages(library(dplyr)) or adding library(dplyr, quietly
= TRUE, warn.conflicts = FALSE)

Reading and Viewing the mtcars dataset as a tibble

# Read the mtcars dataset into a tibble called tb
tb <- as_tibble(mtcars)

• The as_tibble() function is used to convert the built-in mtcars dataset into a tibble
object, named tb.

Exploring the data:

• The head() function is called on tb to display the first six rows of the dataset. This is
a quick way to visually inspect the first few entries.
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• The glimpse() function is used to provide a more detailed view of the tb object, showing
the column names and their respective data types, along with a few entries for each
column.

# Display the first few rows of the dataset
head(tb)

# A tibble: 6 x 11
mpg cyl disp hp drat wt qsec vs am gear carb

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1

# Display the structure of the dataset
glimpse(tb)

Rows: 32
Columns: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,~
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,~
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~

Changing data types

# Convert several numeric columns into factor variables
tb$cyl <- as.factor(tb$cyl)
tb$vs <- as.factor(tb$vs)
tb$am <- as.factor(tb$am)
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tb$gear <- as.factor(tb$gear)

• Factors are used in statistical modeling to represent categorical variables.

• The as.factor() function is used to convert the ‘cyl’, ‘vs’, ‘am’, and ‘gear’ columns
from numeric data types to factors.

• In our case, these four variables are better represented as categories rather than numerical
values. For instance, ‘cyl’ represents the number of cylinders in a car’s engine, ‘vs’ is the
engine shape, ‘am’ is the transmission type, and ‘gear’ is the number of forward gears;
all of these are categorical in nature, hence the conversion to factor.

• At this point, we can call the glimpse() function again to review the data structures.

# Display the structure of the dataset, again
glimpse(tb)

Rows: 32
Columns: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~
$ cyl <fct> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~
$ vs <fct> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,~
$ am <fct> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,~
$ gear <fct> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~

• Notice that the datatypes are now modified and the tibble is ready for further exploration.
[2] [3]

Using dplyr to explore the mtcars tibble

1. filter(): Recall that this function is used to select subsets of rows in a tibble. It takes
logical conditions as inputs and returns only those rows where the conditions hold true.
Suppose we wanted to filter the mtcars dataset for rows where the mpg is greater than
25.
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tb %>%
filter(mpg > 25)

# A tibble: 6 x 11
mpg cyl disp hp drat wt qsec vs am gear carb

<dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <fct> <dbl>
1 32.4 4 78.7 66 4.08 2.2 19.5 1 1 4 1
2 30.4 4 75.7 52 4.93 1.62 18.5 1 1 4 2
3 33.9 4 71.1 65 4.22 1.84 19.9 1 1 4 1
4 27.3 4 79 66 4.08 1.94 18.9 1 1 4 1
5 26 4 120. 91 4.43 2.14 16.7 0 1 5 2
6 30.4 4 95.1 113 3.77 1.51 16.9 1 1 5 2

• This code filters the rows where the miles per gallon (mpg) are greater than 25.

2. Suppose we want to filter cars where the miles per gallon (mpg) are greater than 25 AND
the number of gears is equal to 5.

tb %>%
filter(mpg > 25 & gear == 5)

# A tibble: 2 x 11
mpg cyl disp hp drat wt qsec vs am gear carb

<dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <fct> <dbl>
1 26 4 120. 91 4.43 2.14 16.7 0 1 5 2
2 30.4 4 95.1 113 3.77 1.51 16.9 1 1 5 2

• This code shows that we can impose more than one logical condition in the filter. It
filters by two conditions mpg > 25 & gear == 5

tb %>%
filter(mpg > 25, gear == 5)

# A tibble: 2 x 11
mpg cyl disp hp drat wt qsec vs am gear carb

<dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <fct> <dbl>
1 26 4 120. 91 4.43 2.14 16.7 0 1 5 2
2 30.4 4 95.1 113 3.77 1.51 16.9 1 1 5 2

• This code shows an alternate way of setting AND conditions.
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• R provides the standard suite of comparison operators: \>, \>=, \<, \<=, != (not equal),
and == (equal). It allows us to use common Boolean operators & (and), | (or) and !
(not).

tb %>%
filter(mpg > 30 | gear == 5)

# A tibble: 8 x 11
mpg cyl disp hp drat wt qsec vs am gear carb

<dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <fct> <dbl>
1 32.4 4 78.7 66 4.08 2.2 19.5 1 1 4 1
2 30.4 4 75.7 52 4.93 1.62 18.5 1 1 4 2
3 33.9 4 71.1 65 4.22 1.84 19.9 1 1 4 1
4 26 4 120. 91 4.43 2.14 16.7 0 1 5 2
5 30.4 4 95.1 113 3.77 1.51 16.9 1 1 5 2
6 15.8 8 351 264 4.22 3.17 14.5 0 1 5 4
7 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
8 15 8 301 335 3.54 3.57 14.6 0 1 5 8

• This code demonstrates the use of the | (or) operator.

3. select(): Recall that this function is used to select specific columns. Suppose we want
to select mpg, hp, cyl and am columns.

tb %>%
select(mpg, hp, cyl, am)

# A tibble: 32 x 4
mpg hp cyl am

<dbl> <dbl> <fct> <fct>
1 21 110 6 1
2 21 110 6 1
3 22.8 93 4 1
4 21.4 110 6 0
5 18.7 175 8 0
6 18.1 105 6 0
7 14.3 245 8 0
8 24.4 62 4 0
9 22.8 95 4 0

10 19.2 123 6 0
# i 22 more rows
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• The tibble will only contain the mpg (miles per gallon), hp (horsepower), cyl (cylinders)
and am transmission columns selected from the dataset.

4. Now suppose we wanted to both filter and select. Specifically, suppose we want to:

• filter cars where the miles per gallon (mpg) are greater than 20 AND number of gears is
equal to 5

• select mpg, hp, cyl and am columns for these cars.

filterAndSelect <- tb %>%
filter(mpg > 20 & gear == 5) %>%
select(mpg, hp, cyl, am)

filterAndSelect

# A tibble: 2 x 4
mpg hp cyl am

<dbl> <dbl> <fct> <fct>
1 26 91 4 1
2 30.4 113 4 1

• Here, we have written code that utilizes filter() and select(). These two functions,
in concert with the pipe operator (%\>%), create a pipeline of operations for data trans-
formation. Breaking this down, we observe a two-step process:

• filter(mpg > 20 & gear == 5): Here, we are utilizing the filter() function to sift
through the dataset tb and retain only those rows where mpg (miles per gallon) is more
than 20 and the number of gears is equal to 5.

• select(mpg, hp, cyl, am): This function is then invoked to choose specific columns
from our filtered dataset. In this instance, we have picked the columns mpg, hp (horse-
power), cyl (cylinders), and am (transmission type). The resulting dataset, therefore,
contains only these four columns from the filtered data.

5. Suppose we wanted to select all the columns within a range. Specifically, suppose we
wanted to select all the columns within cyl and wt, excluding all other columns. Recall
that the original tibble has the following data columns.

colnames(tb)

[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
[11] "carb"
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tb %>%
select(cyl:wt)

# A tibble: 32 x 5
cyl disp hp drat wt
<fct> <dbl> <dbl> <dbl> <dbl>

1 6 160 110 3.9 2.62
2 6 160 110 3.9 2.88
3 4 108 93 3.85 2.32
4 6 258 110 3.08 3.22
5 8 360 175 3.15 3.44
6 6 225 105 2.76 3.46
7 8 360 245 3.21 3.57
8 4 147. 62 3.69 3.19
9 4 141. 95 3.92 3.15

10 6 168. 123 3.92 3.44
# i 22 more rows

• select(cyl:wt): This code selects all columns in the tb dataframe starting from cyl
up to and including wt.

• Only the five columns {cyl, disp, hp, drat, wt} get selected. This is a particularly useful
feature when dealing with dataframes that have a large number of columns, and we are
interested in a contiguous subset of those columns

6. Alternately, suppose instead that we wanted to select all columns except those within
the range of cyl and wt.

tb %>%
select(-cyl:wt)

# A tibble: 32 x 6
mpg cyl disp hp drat wt

<dbl> <fct> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62
2 21 6 160 110 3.9 2.88
3 22.8 4 108 93 3.85 2.32
4 21.4 6 258 110 3.08 3.22
5 18.7 8 360 175 3.15 3.44
6 18.1 6 225 105 2.76 3.46
7 14.3 8 360 245 3.21 3.57
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8 24.4 4 147. 62 3.69 3.19
9 22.8 4 141. 95 3.92 3.15

10 19.2 6 168. 123 3.92 3.44
# i 22 more rows

select(-cyl:wt): The - sign preceding the cyl:wt range denotes exclusion. Consequently,
this selects all columns in the tb dataframe, excluding those from cyl to wt inclusive.

7. arrange(): Recall that this function is used to reorder rows in a tibble by one or more
variables. By default, it arranges rows in ascending order.

• Suppose we want to select only the mpg and hp columns, where hp>200 and we want to
sort the result in descending order of mpg.

tb %>%
select(mpg, hp) %>%
filter(hp>200) %>%
arrange(desc(mpg))

# A tibble: 7 x 2
mpg hp

<dbl> <dbl>
1 15.8 264
2 15 335
3 14.7 230
4 14.3 245
5 13.3 245
6 10.4 205
7 10.4 215

tb %>% select(mpg, hp): The select function is used here to extract only the mpg and hp
columns from the tb dataframe.

filter(hp>200): The filter function is used to extract the cars where horsepower hp>200.

arrange(desc(mpg)): The arrange function is then used to order the rows in descending order
(desc) based on the mpg column.

8. Benefit from using %>%: Suppose we wanted to subset the data as follows.

• Select cars with 6 cylinders (cyl == 6).
• Choose only the mpg (miles per gallon), hp (horsepower) and wt (weight) columns.
• Arrange in descending order by mpg.
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Without using the pipe operator, we would have to nest the operations, as follows:

arrange(select(filter(tb, cyl == 6), mpg, hp, wt), desc(mpg))

# A tibble: 7 x 3
mpg hp wt

<dbl> <dbl> <dbl>
1 21.4 110 3.22
2 21 110 2.62
3 21 110 2.88
4 19.7 175 2.77
5 19.2 123 3.44
6 18.1 105 3.46
7 17.8 123 3.44

• Using the pipe operator, we could write the code more efficiently as follows:

tb %>%
filter(cyl == 6) %>%
select(mpg, hp, wt) %>%
arrange(desc(mpg))

# A tibble: 7 x 3
mpg hp wt

<dbl> <dbl> <dbl>
1 21.4 110 3.22
2 21 110 2.62
3 21 110 2.88
4 19.7 175 2.77
5 19.2 123 3.44
6 18.1 105 3.46
7 17.8 123 3.44

• This way, the pipe operator makes the code more readable and the sequence of operations
is easier to follow.

9. mutate(): Recall that this function is used to create new variables (columns) or modify
existing ones.

• Suppose we want to create a new column named efficiency, defined as the ratio of mpg
to hp.
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mutated_data <- tb %>%
mutate(efficiency = mpg / hp) %>%
select(mpg, hp, efficiency, cyl, am) %>%
filter(mpg>30)

mutated_data

# A tibble: 4 x 5
mpg hp efficiency cyl am

<dbl> <dbl> <dbl> <fct> <fct>
1 32.4 66 0.491 4 1
2 30.4 52 0.585 4 1
3 33.9 65 0.522 4 1
4 30.4 113 0.269 4 1

• The resulting tibble contains a new column efficiency, which is the ratio of mpg to hp.

• Note that mutate() does not modify the original dataset, but creates a new object
mutated_data with the results. If we want to modify the original dataset, we would
need to save the result back to the original variable.

transmute(): This is a variation of mutate() which does not retain the old columns.

t1 <- tb %>%
filter(mpg>30) %>%
transmute(efficiency = mpg / hp)

t1

# A tibble: 4 x 1
efficiency

<dbl>
1 0.491
2 0.585
3 0.522
4 0.269

• Notice that transmute() retains only the newly created column.

10. summarise():: Recall that this function is used to create summaries of data. It collapses
a tibble to a single row. Suppose we want to calculate the mean of mpg in the mtcars
dataset
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tb %>%
summarise(Mean_mpg = mean(mpg))

# A tibble: 1 x 1
Mean_mpg

<dbl>
1 20.1

• This code creates a tibble that contains a single row having the mean value of mpg.

• We can extend this code to print both the mean and standard deviation, by slightly
extending the above code, as follows.

tb %>%
summarise(Mean_mpg = mean(mpg),

SD_mpg = sd(mpg)
)

# A tibble: 1 x 2
Mean_mpg SD_mpg

<dbl> <dbl>
1 20.1 6.03

11. To include additional statistical measures such as median, quartiles, minimum, and max-
imum in our summary data, we can use respective R functions within the summarise()
function.

summary_data <- tb %>% summarise(
N = n(),
Mean = mean(mpg),
SD = sd(mpg),
Median = median(mpg),
Q1 = quantile(mpg, 0.25),
Q3 = quantile(mpg, 0.75),
Min = min(mpg),
Max = max(mpg)

)
summary_data
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# A tibble: 1 x 8
N Mean SD Median Q1 Q3 Min Max

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 32 20.1 6.03 19.2 15.4 22.8 10.4 33.9

• We could convert this back into a standard dataframe and display it in a better formatted
manner up to two decimal places, with the following code. [2] [3]

summary_data %>%
as.data.frame() %>%
round(2)

N Mean SD Median Q1 Q3 Min Max
1 32 20.09 6.03 19.2 15.43 22.8 10.4 33.9

Additional functions in the dplyr package

1. rename(): The rename() function is utilized whenever we need to modify the names of
some variables in our dataset. Without changing the structure of the original dataset, it
allows us to give new names to chosen columns.

2. group_by(): The group_by() function comes into play when we need to implement
operations on individual groups within our data. By categorizing our data based on one
or multiple variables, we are able to apply distinct functions to each group separately.

3. slice(): To select rows by their indices, we use the slice() function. This is especially
handy when we need specific rows, for example, the first 10 or last 10 rows, depending
on a defined order.

4. transmute(): When we want to generate new variables from existing ones and keep
only these new variables, we use the transmute() function. It is similar to mutate(),
but it only keeps the newly created variables, making it a powerful tool when we’re only
interested in transformed or calculated variables.

5. pull(): The pull() function is used to extract a single variable as a vector from a
dataframe. This function becomes very practical when we wish to isolate and work with
a single variable outside its dataframe.

6. n_distinct(): To enumerate the unique values in a column or vector, we use the
n_distinct() function. It’s an essential function when we want to know the number of
distinct elements within a specific categorical variable. [2] [3]
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Using dplyr to explore the mtcars tibble more

1. rename(): Remember that this function is helpful in changing column names in our data.
For instance, let us modify the name of the mpg column to MPG in the mtcars dataset.

tb %>%
rename(MPG = mpg)

# A tibble: 32 x 11
MPG cyl disp hp drat wt qsec vs am gear carb

<dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <fct> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2

10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# i 22 more rows

2. group_by(): This function is key for performing operations within distinct groups of
our data.

*For example, let us group the dataset by cyl (number of cylinders) and am transmission and
find the mean and standard deviation for each sub-group.

tb %>%
group_by(cyl, am) %>%
summarize(MeanMPG = mean(mpg),

StdDevMPG = sd(mpg))

`summarise()` has grouped output by 'cyl'. You can override using the `.groups`
argument.

# A tibble: 6 x 4
# Groups: cyl [3]

cyl am MeanMPG StdDevMPG
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<fct> <fct> <dbl> <dbl>
1 4 0 22.9 1.45
2 4 1 28.1 4.48
3 6 0 19.1 1.63
4 6 1 20.6 0.751
5 8 0 15.0 2.77
6 8 1 15.4 0.566

3. slice(): Recall that this function is beneficial when we wish to choose rows based on
their positions. For example, let us slice from row 3 to row 7 of the dataset.

tb %>%
slice(3:7)

# A tibble: 5 x 11
mpg cyl disp hp drat wt qsec vs am gear carb

<dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <fct> <dbl>
1 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
2 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
3 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
4 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
5 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4

In this sliced_data tibble, only the first three rows from the mtcars dataset are included.

4. pull(): Recall that this function is employed to remove a single variable from a
dataframe as a vector. Let us isolate the mpg (miles per gallon) variable from the
dataset.

tb %>%
pull(mpg)

[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4
[16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7
[31] 15.0 21.4

5. n_distinct(): Recall that this function is used to count the distinct values in a column
or vector. Let us count the number of distinct values in thecyl(cylinders) column from
the dataset.
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tb %>%
summarise(countDistinctCyl = n_distinct(cyl))

# A tibble: 1 x 1
countDistinctCyl

<int>
1 3

• This code shows the number of unique levels in the cyl column of the dataset.

Summary of Chapter 6 – Exploring Dataframes (Part 2 of 2)

This chapter provided an overview of the tibble data structure and the dplyr package in the
R programming language. We started with an introduction to tibble, a data structure in R
that is an updated version of data frames with enhanced features for flexible and effective data
management. These benefits include more user-friendly printing, reliable subsetting behavior,
transparent handling of data types, and support for non-syntactic column names.

Subsequently, we shifted focus to the dplyr package, which is a powerful tool for data manipu-
lation in R. This package offers a cohesive set of functions, often referred to as “verbs”, which
allow for efficient and straightforward manipulation of data. The key “verbs” in dplyr—
filter(), select(), arrange(), mutate(), and summarise()— have been explained and
illustrated with examples. An integral component of the dplyr package, the pipe operator
%>%, was also discussed. This operator allows for a more readable and understandable chaining
of multiple operations in R, leading to cleaner and more straightforward code.

The chapter gives a comprehensive illustration of using dplyr on the mtcars dataset. This
practical demonstration has involved applying dplyr functions to a dataset and explaining the
process and results. In addition to the basics, the chapter has also touched upon additional
dplyr functions such as rename(), group_by(), and slice(), enriching readers’ understand-
ing and competency in data manipulation using R.

Overall, this chapter has provided an in-depth understanding of tibbles and dplyr, their ap-
plications, and their importance in data manipulation and management in the R programming
environment.
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