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Exploring Univariate Categorical Data

THIS CHAPTER explores how to summarize and visualize univariate, categorical data.

1. Categorical data is a type of data that can be divided into categories or groups. labels
or categorical codes like “male” and “female,” “red,” “green,” and “blue,” or “A,” “B,”
and “C” are frequently used to describe category data. This data type is commonly
employed in research and statistics where you can categorize the data under various
headings depending on their features, characteristics, or any other parameters [1]

2. There are several typical examples of categorical data.:

• Gender (male, female)
• Marital status (married, single, divorced)
• Education level (high school, college, graduate school)
• Occupation (teacher, doctor, engineer)
• Hair color (brown, blonde, red, black)
• Eye color (brown, blue, green, hazel)
• Type of car (sedan, SUV, truck) [2]

Types of Categorical Data – Nominal, Ordinal Data

1. ‘Nominal data‘: This data type is characterized by variables that have two or more
categories without having any kind of order or priority. This name-based categorization
means that nominal data represents whether a variable belongs to a certain category or
not, but it does not convey any qualitative value about the variable itself. For example,
‘gender’ is a nominal data type, as it categorizes data into ‘male’ or ‘female’, and neither
category is intrinsically superior to the other. Nominal data is usually represented by
text labels or categorical codes. [2]
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2. ‘Ordinal data‘: Unlike nominal data, ordinal data categories have an inherent or-
der. This order, however, does not provide any information about the exact differences
between the categories. Common examples of ordinal data include the Likert scale in
surveys, which ranges from “very dissatisfied” to “very satisfied,” or clothing sizes, which
are typically “small,” “medium,” or “large.” While we know that “large” is bigger than
“medium” and “medium” is bigger than “small,” we don’t know exactly how much bigger
one is compared to the other (McCrum-Gardner, 2008).

• Ordinal data is frequently utilised to describe groups or categories that can be rated
or sorted, such as educational level {high school, college, graduate school}, or movie
reviews {G, PG, PG-13, R, NC-17}. [2]

Factor Variables in R

1. “Factor” is a term specifically used in R programming language to handle categorical
data. Factors are the data objects which are used to categorize the data and store it as
levels. They can store both strings and integers. They are useful in data analysis for
statistical modeling. [4]

2. A factor variable has levels, which are the distinct categories of the variable. For in-
stance, if we have a factor variable named “color”, the levels might be “red,” “blue,” and
“green.” Each level corresponds to a category in the categorical data. Creation of a factor
variable in R can be done as follows:

color <- c("red", "blue", "green", "red", "green", "yellow")
color_factor <- factor(color)

3. In this example, color_factor is a factor variable with four levels - “red”, “blue”,
“yellow” and “green”.

levels(color_factor)

[1] "blue" "green" "red" "yellow"

4. Data: Suppose we run the following code to prepare the mtcars data for subsequent
analysis and save it in a tibble called tb.

# Load the required libraries, suppressing annoying startup messages
library(dplyr, quietly = TRUE, warn.conflicts = FALSE)
library(tibble, quietly = TRUE, warn.conflicts = FALSE)
# Read the mtcars dataset into a tibble called tb
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data(mtcars)
tb <- as_tibble(mtcars)
# Convert relevant columns into factor variables
tb$cyl <- as.factor(tb$cyl) # cyl = {4,6,8}, number of cylinders
tb$am <- as.factor(tb$am) # am = {0,1}, 0:automatic, 1: manual transmission
tb$vs <- as.factor(tb$vs) # vs = {0,1}, v-shaped engine, 0:no, 1:yes
tb$gear <- as.factor(tb$gear) # gear = {3,4,5}, number of gears
# Directly access the data columns of tb, without tb$mpg
attach(tb)

5. The above code reads the mtcars data into a tibble named tb and transforms certain
variables from the tibble into factors (categorical variables), using the as.factor()
function. Specifically, the cyl (cylinders), vs (engine shape), am (transmission type),
and gear (number of gears) variables are transformed into factors. This change is useful
for subsequent analyses that need to recognize these variables as categorical data, rather
than numerical data.

Analysis of a univariate Factor Variable

1. Recall that in the mtcars dataset, cyl stands for the number of cylinders in the car’s
engine. By transforming cyl into a factor variable, we’re recognizing it as a categorical
variable, which means we’re acknowledging that it consists of several distinct categories
or levels. Each category or level corresponds to a specific number of cylinders a car might
have. [4]

2. Notice that in order to convert cyl into a factor variable in R, we have used the follow-
ing line of code, which modifies the cyl column in the mtcars data frame (or tibble),
transforming it from a numerical variable into a factor variable.

tb$cyl <- as.factor(tb$cyl)

3. As a univariate factor variable, cyl represents a single, categorical characteristic of each
car in the dataset: the number of cylinders in the engine. In this context, “univariate”
means that we’re only considering one variable at a time, without reference to any other
variables. [3]

4. In the case of cyl, the unique categories (or levels) would correspond to the different
numbers of cylinders in the cars’ engines. The following R code give us the levels of cyl.

levels(tb$cyl)
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[1] "4" "6" "8"

This code could be alternately written as follows, giving the same result:

tb$cyl %>% levels()

4. The levels() function retrieves the levels of a factor variable. When it is applied to
tb$cyl in the given context, it provides the unique categories of the cyl factor variable
from the tb tibble, which are “4”, “6”, and “8”. These values correspond to the distinct
number of cylinders in the cars’ engines that are represented in the mtcars dataset
(Wickham & Grolemund, 2016).

Summarizing a univariate Factor Variable

1. Frequency Table: A simple way to summarize categorical (or factor) data is by using a
frequency table. It represents the count (frequency) of each category (level) in the factor
variable. Essentially, a frequency table gives us a snapshot of the data distribution by
indicating how many data points fall into each category [5]

2. We can create a frequency table using the table() function. For example, to create
a frequency table for the cyl variable in the tb tibble, we could write the following
code whose output shows the number of cars that fall into each cyl category (4, 6, or 8
cylinders).

table(tb$cyl)

4 6 8
11 7 14

This code could be alternately written as follows, giving the same result:

tb$cyl %>% table()

Discussion:

• tb$cyl: This piece of code is specifying the cyl column in the tb tibble, where cyl
represents the number of cylinders in the car’s engine.
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• %>% table(): The output of tb$cyl (i.e., the cyl column of tb) is then passed to the
table() function via the pipe operator %>%. The table() function creates a frequency
table of the cyl column, counting the number of occurrences of each level (i.e., each
distinct number of cylinders).

3. Proportions: In contrast to the table() function, which generates a count of each cate-
gory, the prop.table() function gives the proportions of each category. The subsequent
code computes the proportions of each unique count of cylinders in the cyl column from
the tb tibble.

tb$cyl %>%
table() %>%
prop.table()

.
4 6 8

0.34375 0.21875 0.43750

%>% prop.table(): The output of table(), a frequency table, is passed to the prop.table()
function. This function converts the frequency table into a proportion table, showing the
proportion of the total for each level rather than the raw count.

• This code could be alternately written as follows, giving the same result.

p0 = prop.table(table(cyl))
p0

• The prop.table() function is used in this example to determine the percentage of
each category in the cyl variable of the mtcars dataset. For example, we find that the
proportion of cars with 4 cylinders are 0.34375.

4. Percentages: Suppose we wanted to express the proportions as percentages, rounded
to two decimal places. We could calculate the percentages using the round() function,
as follows:

tb$cyl %>%
table() %>%
prop.table() %>%
`*`(100) %>%
round(digits = 2) %>%
paste0("%")
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[1] "34.38%" "21.88%" "43.75%"

Discussion:

• %>%*(100): Multiplies these proportions by 100, effectively converting them to percent-
age format.

• %>% round(digits = 2): Rounds these percentages to two decimal places.

• %>% paste0("%"): Concatenates a % symbol to denote percentages .

• The final output will be a table displaying the percentage of cars that have 4, 6, and 8
cylinders, respectively. Each percentage is rounded to two decimal places. The propor-
tion of each category or group of categories, rounded to two decimal places, is presented.
For instance, 43.75% of automobiles have 8 cylinders.

Visualization of a univariate Factor Variable

Barplot

• The barplot() function in base R can be used to create a simple bar plot.

• We usually feed it a frequency table, which can be created with the table() function.
Here’s an example of how to create a bar plot for the cyl variable:

# Create a table of the counts of cars by number of cylinders
cyl_table <- table(tb$cyl)

# Create a barplot of the table
barplot(cyl_table,

main = "Number of cars by cylinder count",
xlab = "Cylinders",
ylab = "Number of cars",
col = "gold")
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• In this code, table(tb$cyl) creates a frequency table for the cyl variable. The xlab,
ylab, and main arguments are used to set the x-axis label, y-axis label, and the plot
title, respectively. The color of the bars can be altered with the col option.

Pie chart

• Pie charts can be created with the pie() function in base R.

• Just like with barplot(), we typically provide a frequency table to pie().

• Here’s how to create a pie chart for the cyl variable:

# Count the number of cars with each number of cylinders
cyl_counts <- table(mtcars$cyl)

# Create a pie chart
pie(cyl_counts,

main = "Pie Chart of Cars by Number of Cylinders",
labels = c("4 cylinders", "6 cylinders", "8 cylinders"),
col = c("red", "green", "blue"))
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4 cylinders

6 cylinders

8 cylinders

Pie Chart of Cars by Number of Cylinders

• Alternately, if we wanted to display the percentages, we could write the following code:

# Count the number of cars with each number of cylinders
cyl_counts <- table(mtcars$cyl)
percentages <- round(prop.table(table(tb$cyl))*100, 2)
mylabels <- paste(percentages, "%")

# Create a pie chart
pie(cyl_counts,

main = "Pie Chart of Cars by Number of Cylinders",
labels = mylabels)

34.38 %

21.88 %

43.75 %

Pie Chart of Cars by Number of Cylinders

Discussion:

• percentages <- round(prop.table(table(tb$cyl))*100, 2): This line calculates
the proportions of each unique number of cylinders, multiplies these proportions by 100
to convert them into percentages, and rounds these percentages to two decimal places.
The resulting percentages are saved to the percentages variable.
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• mylabels <- paste(percentages, "%"): This line creates labels for each slice of the
pie chart. These labels are made up of the percentages calculated in the previous step,
followed by a percentage sign (%). The labels are saved to a mylabels variable.

• The pie() function then creates a pie chart using the frequency counts (cyl_counts)
and the labels (mylabels). The main argument is used to set the title of the pie chart.

• While both bar plots and pie charts can be used to visualize the same data, they each have
their strengths and limitations. Bar plots are typically better for comparing absolute
counts or proportions across levels, whereas pie charts may be more intuitive when
demonstrating the part-whole relationship. [7]

Visualization of a univariate Factor data using ggplot2 package

Overview of ggplot2 package

• The ggplot2 package, part of the tidyverse collection of R packages, is a powerful and
flexible tool for creating a wide range of visualizations in R. It is built on the principles of
the Grammar of Graphics, which provides a coherent system for describing and building
graphs. [8]

• At the heart of ggplot2 is the idea of mapping data to visual elements. This approach
encourages you to think about the relationship between your data and the visual repre-
sentation, making it easier to create complex and customized graphs.

Key elements of ggplot2 include:

1. Data: The data frame that is to be visualized.
2. Aesthetics: These are mappings from data to visual elements (like position, color, and

size).
3. Geoms: Geometric objects that represent the data (like points, lines, and bars).
4. Scales: These control how data values are translated to visual elements.
5. Facets: For creating multiple sub-plots, each showing a subset of the data.

In a ggplot2 graph, these elements are combined in layers, enabling a high degree of cus-
tomization. [8]

Bar Plot using ggplot2 package

1. Here is an example of how to use ggplot2 to create a bar plot of the cyl factor:

library(ggplot2)

9



Attaching package: 'ggplot2'

The following object is masked from 'tb':

mpg

ggplot(data = tb,
aes(x = cyl)) +

geom_bar(aes(fill = cyl)) +
labs(title = "Bar Plot of Cars by Cylinders",

x = "Cylinders",
y = "Count")
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Bar Plot of Cars by Cylinders

Discussion:

• library(ggplot2): This line loads the ggplot2 package into your R session. The ggplot2
package provides a powerful framework for creating diverse and sophisticated graphics
in R.

• ggplot(data = tb, aes(x = cyl)) +: This line initiates the creation of a ggplot ob-
ject. The ggplot() function takes as arguments the data frame to use (tb in this case)
and an aesthetics mapping function aes(), which maps the cyl variable to the x-axis of
the plot. The + sign indicates that more layers will be added to this initial ggplot object.
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• geom_bar() +: This line adds a layer to the ggplot object to create a bar plot. The
geom_bar() function by default will create a bar plot where the height of the bars
corresponds to the count of each category in the data.

• labs(title = "Bar Plot of Cylinders", x = "Cylinders", y = "Count"): This
line adds labels to the plot. The labs() function is used to set the title of the plot and
the labels for the x and y axes. The title of the plot is set as “Bar Plot of Cylinders”,
the x-axis is labeled as “Cylinders”, and the y-axis is labeled as “Count”.

• To summarize, this code is loading the ggplot2 package, initializing a ggplot object with
data from the tb tibble and mapping the cyl variable to the x-axis, adding a bar plot
layer to the ggplot object, and finally adding a title and labels to the x and y axes.

2. Suppose we wanted to add labels to the bars showing the count of each category. We
can do this by using the geom_text() function in ggplot2. Here’s how we can modify
our code to include labels:

ggplot(data = tb, aes(x = cyl)) +
geom_bar(aes(fill = cyl)) +
geom_text(stat='count',

aes(label=after_stat(count)),
vjust=-0.5) +

labs(title = "Bar Plot of Cylinders",
x = "Cylinders",
y = "Count")
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Bar Plot of Cylinders

Discussion:

• geom_text(stat='count', aes(label=after_stat(count)), vjust=-0.5): This
line adds a text layer to the plot.

• The stat='count' argument tells geom_text() to calculate the count of each category,
and aes(label=after_stat(count)) maps these counts to the text labels.

• The vjust=-0.5 argument adjusts the vertical position of the labels to be slightly above
the top of each bar.

• We can also customize the appearance of the text labels using the various arguments to
geom_text(), such as size, color, fontface, and so on. [8]

Pie chart using ggpie

1. Aside: Unfortunately, the ggplot2 package doesn’t directly support pie charts, because
they are generally not as effective at displaying data as other types of plots.

2. The ggpie() function is part of the ggpubr package in R, a package that provides a set
of functions to enhance the visual appeal and usability of ggplot2 plots It specifically
enables the creation of pie charts within the ggplot2 framework. It accepts the following
key arguments:

• data: The data frame containing the variables to be used in the pie chart.
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• x: The variable in the data frame that determines the size (area) of the pie slices.

• fill: The variable that determines the fill color of the pie slices.

• label: The variable to use for the labels of the slices.

• Additional aesthetic details like the title of the chart, color palette, and other ggplot2
functionalities like adding layers, changing themes, etc., can also be utilized with ggpie().
[9]

3. Let us use ggpie() to create a boxplot of cyl.

library(ggpubr)
# Compute counts of each cylinder type
cyl_counts <- as.data.frame(table(tb$cyl))
colnames(cyl_counts) <- c("cyl", "n")

# Create the pie chart
ggpie(data = cyl_counts,

x = "n",
fill = "cyl",
label = "cyl",
palette = "jco",
title = "Pie Chart of Cylinders")

8
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Pie Chart of Cylinders

Discussion:
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• The library(ggpubr) line loads the ggpubr package. This package contains the ggpie
function which is used to create pie charts in ggplot2.

• The command table(tb$cyl) calculates the frequency of each type of cyl (cylinders)
present in the tb dataset. as.data.frame() is then used to convert this table into a data
frame, which is stored in the cyl_counts object. The column names of cyl_counts are
then set to “cyl” and “n” using the colnames() function.

• The ggpie() function is used here to generate a pie chart. The arguments to ggpie()
specify the data frame (data = cyl_counts), the variable that determines the size of
the pie slices (x = "n"), the variable that determines the fill color of the slices (fill =
"cyl"), the variable used for the labels of the slices (label = "cyl"), the color palette
(palette = "jco"), and the title of the chart (title = "Pie Chart of Cylinders").

• This code results in a pie chart where each slice represents a different number of cylinders
(cyl), the size of each slice is determined by the frequency of each number of cylinders
(n), and the color of each slice is determined by the number of cylinders (cyl). The
labels for each slice also represent the number of cylinders, and the color palette jco is
used for the colors of the slices. [10]

4. If we wanted to instead display the percentages for each pie, we could modify this code
as follows:

library(ggpubr)

# Compute counts and proportions of each cylinder type
cyl_counts <- as.data.frame(table(tb$cyl))
colnames(cyl_counts) <- c("cyl", "n")

# Calculate proportions
cyl_counts$prop <- cyl_counts$n / sum(cyl_counts$n)

# Create labels that display proportions as percentages
cyl_counts$labels <- paste0(round(cyl_counts$prop*100, 2), "%")

# Create the pie chart with proportions
ggpie(data = cyl_counts,

x = "prop",
fill = "cyl",
label = "labels",
palette = "jco",
title = "Pie Chart of Cylinders")

14



43.75%

21.88%

34.38%

cyl 4 6 8

Pie Chart of Cylinders

Discussion:

• This version of the code calculates the proportion of each cylinder type by dividing the
count of each type by the total count i.e., cyl_counts$n / sum(cyl_counts$n).

• These proportions are then stored in a new column in the cyl_counts data frame.

• Labels are created that display these proportions as percentages, and these labels are
used in the pie chart instead of the raw counts.

• The x argument in ggpie() is updated to use these proportions, so the size of each slice
in the pie chart corresponds to the proportion of each cylinder type.

Summary of Chapter 8 – Categorical Data

In this chapter, we explored the fundamental concept of categorical data and its two primary
types: nominal and ordinal data. Categorical data involves organizing information into distinct
categories or groups using labels or codes, making it a crucial data type in various fields,
including research, statistics, and data analysis.

We delved into nominal data, which represents variables with categories that lack any inherent
order or hierarchy. Examples such as gender (male, female), marital status (married, single,
divorced), and hair color (brown, blonde, red, black) exemplify nominal data. These categories
are characterized by their name-based grouping, without conveying any intrinsic quantitative
information. Next, we discussed ordinal data, which differs from nominal data by possessing
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categories with a specific order or ranking, but without exact quantitative distinctions. The
Likert scale used in surveys (ranging from “very dissatisfied” to “very satisfied”) and clothing
sizes (small, medium, large) are instances of ordinal data. While we can determine the order,
we lack precise knowledge of the differences between categories.

Factor variables in R played a significant role in the chapter, as they are essential for handling
and storing categorical data. Factor variables allow us to map levels to distinct categories,
facilitating efficient data organization and manipulation. We learned how to create factor
variables in R using the factor() function, which was then applied to the mtcars dataset.

Additionally, we explored the analysis of univariate factor variables in R, focusing on sum-
marizing the data through frequency tables. These tables provided counts of each category,
allowing us to understand the distribution of categorical data better. Moreover, we computed
proportions and percentages to gain a more insightful view of the data distribution, enhancing
the interpretation of results.

The chapter proceeded to introduce powerful visualization techniques for univariate factor
variables using the ggplot2 package. As part of the tidyverse collection of R packages, ggplot2
is known for its flexibility and capability to create diverse and customizable visualizations.
We specifically looked at creating bar plots using ggplot2. By utilizing the ggplot() function
to initialize a ggplot object and the aes() function to map the factor variable to the x-axis,
we effectively represented categorical data. The geom_bar() function enabled the generation
of bar plots, while geom_text() facilitated the addition of count labels for each category,
enhancing the visual representation.

Although ggplot2 does not natively support pie charts due to their limited effectiveness in data
visualization, we introduced the ggpie() function from the ggpubr package as an alternative.
Using ggpie(), we demonstrated how to create pie charts within the ggplot2 framework. The
function allowed us to represent proportions or percentages as slices in the pie chart, providing
a comprehensive understanding of the distribution of the categorical data.
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