Bivariate Continuous data (Part 2 of 4)

Chapter 13.

In this chapter, we analyze categorical and continuous data using R’s dplyr and ggplot2 pack-
ages. It demonstrates various ggplot2 visualization techniques for continuous data within single
categories, including Bee Swarm, Histogram, Probability Density Function (PDF), Cumulative
Density Function (CDF), Box plot, and Violin plot.

Next, we use dplyr and ggplot2 for data summarization. This includes calculating and visual-
izing summary statistics such as the mean and standard deviation. Techniques like line and
bar plots with error bars are employed to elucidate relationships. The chapter further extends
to bivariate analyses, examining relationships between multiple continuous variables and be-
tween different categories. This approach offers an in-depth guide to effectively summarizing
and visualizing continuous data in R.

Data: Suppose we run the following code to prepare the mtcars data for subsequent analysis
and save it in a tibble called tb. [1]

Load the required libraries, suppressing annoying startup messages
library(dplyr, quietly = TRUE, warn.conflicts = FALSE)
library(tibble, quietly = TRUE, warn.conflicts = FALSE)
library(knitr) # For formatting tables

Read the mtcars dataset into a tibble called tb

data(mtcars)

tb <- as_tibble(mtcars)

Convert relevant columns into factor variables

tb$cyl <- as.factor(tb$cyl) # cyl = {4,6,8}, number of cylinders

tb$am <- as.factor(tb$am) # am = {0,1}, O:automatic, 1: manual transmission
tb$vs <- as.factor(tb$vs) # vs = {0,1}, v-shaped engine, O:no, 1l:yes
tb$gear <- as.factor(tb$gear) # gear = {3,4,5}, number of gears

Directly access the data columns of tb, without tb$mpg
attach(tb)

Visualizing Continuous Data using ggplot2

Let’s take a closer look at some of the most effective ways of visualizing continuous data, across
one Category, using ggplot2, including

(i) Bee Swarm plots, using ggplot2;
(ii) Histograms, using ggplot2;

)
)
(iii) PDF and CDF Density plots, using ggplot2;
(iv) Box plots, using ggplot2;

)

(v) Violin plots, using ggplot2;

Bee Swarm Plot across one Category using ggbeeswarm

¢ Visualizing Median using Box Plot — median weight of the cars broken down by cylinders
(cyl=4,6,8). [2] [3]

Loading the ggplot2 package for data visualization
library(ggplot2)

Attaching package: 'ggplot2'

The following object is masked from 'tb':

mpg

Loading the ggbeeswarm package for beeswarm plot
library (ggbeeswarm)

Creating a beeswarm plot using ggplot
ggplot (mtcars, # Specifying the data source as 'mtcars' dataset
aes(x = factor(cyl), # Mapping 'cyl' as a factor to the x-axis
y = mpg)) + # Mapping 'mpg' to the y-axis
geom_beeswarm() + # Adding the beeswarm layer
labs(title = "Bee Swarm plot of Mileage (mpg) by Cylinders",
x = "Cylinders (cyl)", # Label for the x-axis
y = "Miles per gallon (mpg)") + # Label for the y-axis
theme_minimal() # Applying a minimal theme to the plot

Bee Swarm plot of Mileage (mpg) by Cylinders

35
[J
[]

30 L
[]
[]

25 3
()
[J

Miles per gallon (mpg)
S
o 00

&
o afno o o0

10

4 6
Cylinders (cyl)

oo

Histograms across one Category using ggplot2

« Visualizing histograms of car milegage (mpg) broken down by transmission (am=0,1). [2]
[4] [5]

Using ggplot2 to create a histogram
ggplot(tb, aes(x = mpg, # Setting 'mpg' as the x-axis variable
£ill = am)) + # Filling bars based on 'am'
geom_histogram(binwidth = 5,
color = "black") + # histogram with bin width of 5
scale_fill_manual(values = c("gold", "lightblue")) + # setting fill colors
theme_minimal() + # Applying a minimalistic theme
labs(title = "Histogram of Miles Per Gallon (mpg) by Transmission Type (am)",
x = "Miles Per Gallon (mpg)", # Label for the x-axis
y = "Frequency") # Label for the y-axis

Histogram of Miles Per Gallon (mpg) by Transmission Type (am)

9

§ am
6

g |:|o

o

T |:|1
3
0 |

10 20 30
Miles Per Gallon (mpg)

o Discussion: If we want separate histograms, we can set facet_wrap(~ am).

Creating a histogram using ggplot2 with 'tb' dataset
ggplot(tb, aes(x = mpg, # Setting 'mpg' as the x-axis variable
fill = am)) + # Filling bars based on 'am' (transmission type)
geom_histogram(binwidth = 5, color = "black") + # bin width of 5
scale_fill_manual(values = c("gold", "lightblue")) + # fill colors
facet_wrap(~ am) + # Separating the histograms by 'am' value for comparison
theme_minimal() + # Applying a minimalistic theme to the plot
labs(title = "Histogram of Miles Per Gallon (mpg) by Transmission Type (am)",
x = "Miles Per Gallon (mpg)", # Label for the x-axis
y = "Frequency") # Label for the y-axis

Histogram of Miles Per Gallon (mpg) by Transmission Type (am)

0 1

8

6
a am
o
S 4 [:] 0
o
g L]:

2

0

10 20 30 10 20 30

Miles Per Gallon (mpg)

Histogram across one Category using ggpubr

Loading the ggpubr package
library(ggpubr)

Creating a histogram with enhanced features using gghistogram from ggpubr.
gghistogram(tb,

x = "mpg", # Setting 'mpg' as the variable for histogram.

bins = 6, # Specifying the number of bins.

add = "mean", # Adding a line to indicate the mean .
rug = TRUE, # Adding a rug plot at the bottom .
color = "am", # Setting the color .

fill = "am", # Filling the bars based on 'am'.

alpha = 0.8, # Setting transparency level of the fill.
palette = c("gold", "lightblue"), # Defining a color palette
title = "Histogram of Mileage (mpg) by Transmission (am=0,1)")

Histogram of Mileage (mpg) by Transmission (am=0,1)

am 0 1

6-
2 4
>
o
o

2-

0-

10 20 30
mpg

Histograms across two Categories using ggplot2

o Visualizing histograms of car milegage (mpg) by transmission (am=0,1) and cylinders
(cy1=4,6,8). [2] [4] [5]

ggplot(tb, aes(x = mpg,
fill = am)) +

geom_histogram(binwidth = 3, color = "black") + # bin width of 3
scale_fill_manual(values = c("gold", "lightblue")) + # fill
facet_grid(cyl ~ am) + # grid faceted by 'cyl' and 'am'
theme _minimal() + # Applying a minimalistic theme to the plot
labs(title = "Mileage (mpg) by Transmission (am=0,1) and Cylinders",

x = "Miles Per Gallon (mpg)", # Label for the x-axis

y = "Frequency") # Label for the y-axis

Mileage (mpg) by Transmission (am=0,1) and Cylinders

0 1
6
4
N
2
0 — 1 1
6
é’ am
4
%')_ o |:|O
2° |—| |_| g
Lo
6
4
[e0)
i —| [
0

10 15 20 25 30 35 10 15 20 25 30 35
Miles Per Gallon (mpg)

PDF across one Category using ggplot2

o Visualizing the Probability Density Functions (PDF) of car milegage (mpg) by transmis-
sion (am=0,1). [2], [5]

Using ggplot2 to create a density plot
ggplot(tb, aes(x = mpg, # Setting 'mpg' as the x-axis variable
fill = am)) + # Filling the plot based on 'am'
geom_density(color = "black") + # Creating a density plot
scale_fill_manual(values = c("gold", "lightblue")) + # fill colors
facet_wrap(~ am) + # Separating the plots by 'am'
theme_minimal() + # Applying a minimalistic theme to the plot
labs(title = "Density Plot of Mileage (mpg) by Transmission (am=0,1)",
x = "Miles Per Gallon (mpg)", # Label for the x-axis
y = "Density") # Label for the y-axis

Density Plot of Mileage (mpg) by Transmission (am=0,1)

0 1
0.100
0.075
> am
@ 0,050 |:| 0
(]
& uE
0.025
0.000

10 15 20 25 30 3510 15 20 25 30 35
Miles Per Gallon (mpg)

PDF across one Category using ggpubr

e The provided R code creates a Boxplot of the mpg (miles per gallon) variable, using the
ggboxplot () function from the ggpubr package.

Loading the ggpubr package
library(ggpubr)

Creating a density plot with enhanced features using ggdensity from ggpubr.
ggdensity (tb,
x = "mpg", # Setting 'mpg' as the variable for the density plot.

color = "am", # Setting the color of the lines based on 'am'.
fill = "am", # Filling the plot based on 'am'.
add = "mean", # Adding a line for the mean of the distribution.

rug = TRUE, # Adding a rug plot at the bottom

palette = c("gold", "skyblue"), # Defining a color palette
title = "PDF of Mileage (mpg) by Transmission (am=0,1)",
ylab = "Density", # Label for the y-axis.

xlab = "Miles Per Gallon (mpg)" # Label for the x-axis.

PDF of Mileage (mpg) by Transmission (am=0,1)

am 0 1

0.100-

0.075-
2
2 0.050+
(]
(|

0.025-

0.000-

10 15 20 25 30 35

Miles Per Gallon (mpg)

CDF across one Category using ggplot2

o Visualizing the Cumulative Density Functions (CDF) of car milegage (mpg) by transmis-
sion (am=0,1). [2], [5]

Loading the ggplot2 package for data visualization.
library(ggplot2)

Creating cumulative distribution function (CDF) plots for 'mpg' based on 'am'.
ggplot (tb, aes(x = mpg,
color = factor(am))) + # Mapping 'mpg' to x-axis
stat_ecdf(geom = "line") + # Using 'stat_ecdf' to compute CDF.
scale _color_manual(values = c("blue", "black")) + # colors
labs(x = "Miles Per Gallon (mpg)", y = "CDF", # Setting labels .
title = "CDF of Mileage (mpg) by Transmission (am=0,1)",
color = "am") + # Labeling the color legend as 'am'.
theme_minimal() # Applying a minimalistic theme to the plot.

CDF of Mileage (mpg) by Transmission (am=0,1)

1.00
0.75
am
LL
0O 0.50 — 0
@)
— 1
0.25
0.00

10 15 20 25 30 *
Miles Per Gallon (mpg)

Box Plot across one Category using ggplot?2

« Visualizing Boxplots of car milegage (mpg) broken down by cylinders (cy1=4,6,8). [2],
[6]

Loading the ggplot2 package for data visualization.
library(ggplot2)

Creating a boxplot using ggplot2.
ggplot(tb, aes(x = cyl, # Setting 'cyl' as the x-axis variable
y = mpg)) + # Setting 'mpg' as the y-axis variable
geom_boxplot(fill = c("gold", "lightblue", "lightpink"), # fill colors
color = "black") + # Setting the color of the box borders
coord_flip() + # Flipping the coordinates to make the boxplot horizontal
labs(title = "Boxplot of Mileage (mpg) by Cylinders (cyl=4,6,8)",
y = "Miles Per Gallon (mpg)", # Label y-axis (flipped to x-axis)
x = "Cylinders") + # Label for the x-axis (flipped to y-axis)
theme_minimal() # Applying a minimalistic theme to the plot

10

Boxplot of Mileage (mpg) by Cylinders (cyl=4,6,8)

8 [] — []
Y
3
£6 — B
=
O

4 J—

10 15 20 25 30 35

Miles Per Gallon (mpg)

Box Plot across one Category using ggpubr

e The provided R code creates a Boxplot of the mpg (miles per gallon) variable, using the
ggboxplot () function from the ggpubr package. [2], [6]

Loading the ggpubr package
library(ggpubr)

Creating a boxplot with enhanced features using ggboxplot from ggpubr.

ggboxplot (tb,
y = "mpg", # Setting 'mpg' as the y-axis variable.
x = "cyl", # Setting 'cyl' as the x-axis variable.
color = "cyl", # Setting the outline color of the boxes.

fill = "white", # Setting the fill color of the boxes to white.
palette = c("black", "blue", "red"), # Defining a color palette.
shape = "cyl", # Defining the shape of data points based on 'cyl'.
orientation = "horizontal", # Setting the orientation.

add = "jitter", # Adding jitter to display individual points.
title = "Boxplot of Mileage (mpg) by Cylinders (cyl=4,6,8)",
ylab = "Miles Per Gallon (mpg)", # Label for the y-axis.

xlab = "Cylinders" # Label for the x-axis.

11

Boxplot of Mileage (mpg) by Cylinders (cyl=4,6,8)
cyl B 4 B9 6 B9 8

:

Cylinders
o
>| >
- >
q|

1

10 15 20 25 30 35
Miles Per Gallon (mpg)

Box Plot across two Categories using ggplot2

 Visualizing Boxplots of car milegage (mpg) broken down by cylinders (cyl1=4,6,8) and
Transmission (am=0,1). [2], [6]

Creating a boxplot using ggplot2
ggplot (tb,
aes(x = as.factor(am),
y = mpg, # Mapping 'am' and 'mpg' to x and y axes
fill = as.factor(am))) + # filling boxplots based on 'am'.
geom_boxplot() + # Adding the boxplot layer.
scale_fill_manual(values = c("gold", "lightblue"),
name = "Transmission") + # fill colors
facet_grid(~ cyl) + # grid of boxplots faceted by 'cyl'
theme minimal() + # a minimalistic theme for a cleaner look.
labs(title = "Mileage by Cylinders (cyl=4,6,8) and Transmission (am=0,1)",
x = "Transmission Type (am)", # Label for the x-axis.
y = "Miles Per Gallon (mpg)") # Label for the y-axis.

12

Mileage by Cylinders (cyl=4,6,8) and Transmission (am=0,1)

4 6 8

35
S 30
Q.
E
§ 25 Transmission
;= |
O — =
o 20 1
g — =
(%)
Q

10

0 1 0 1 0 1
Transmission Type (am)
Alternately:

Creating a boxplot using ggplot2
ggplot(tb, aes(x = as.factor(cyl),
y = mpg, # Mapping 'cyl' and 'mpg' to x and y axes
fill = as.factor(cyl))) + # filling boxplots based on 'cyl'
geom_boxplot() + # Adding the boxplot layer.
scale_fill_manual(values = c("gold", "lightblue", "lightpink"),
name = "Cylinders") + # fill colors
facet_grid(~ am) + # Grid of boxplots faceted by 'am' (transmission)
theme_minimal() + # Applying a minimalistic theme for a cleaner look.
coord_flip() + # Flipping the coordinates to make the boxplot horizontal.
labs(title = "Mileage (mpg) by Transmission (am=0,1) and Cylinders (cyl=4,6,8)",
x = "Number of Cylinders (cyl)", # Label for the x-axis.
y = "Miles Per Gallon (mpg)") # Label for the y-axis.

13

Mileage (mpg) by Transmission (am=0,1) and Cylinders (cyl=4,6

0 1
=8
=)
) .
o Cylinders
2
6 =
@)
e =
5 =
Q
£
z 4 — —

10 15 20 25 30 3510 15 20 25 30 35
Miles Per Gallon (mpg)

Box Plot across two Categories using ggpubr

e The provided R code creates Boxplots of the mpg (miles per gallon) variable, using the
ggboxplot () function from the ggpubr package.

Loading the ggpubr package for enhanced ggplot2 functionalities.
library (ggpubr)

Creating a boxplot with additional features using ggboxplot from ggpubr.
ggboxplot (tb,

y = "mpg", # Setting 'mpg' as the y-axis variable.

x = "cyl", # Setting 'cyl' as the x-axis variable.

color = "cyl", # Setting the outline color of the boxes

fill = "white", # Setting the fill color of the boxes to white.

palette = c("black", "blue", "red"), # Defining a color palette

shape = "cyl", # Defining the shape of data points

orientation = "horizontal", # Setting the orientation

add = "jitter", # Adding jitter .

facet.by = "am", # Faceting the plot by 'am'

title = "Boxplot of Mileage by Cylinders, Transmission",

ylab = "Miles Per Gallon (mpg)", # Label for the y-axis.

xlab = "Cylinders" # Label for the x-axis.

14

Boxplot of Mileage by Cylinders, Transmission

cyl B9 4 B9 6 B4 8

Cylinders
<
i >
==

10 15 20 25 30 350 15 20 25 30 35
Miles Per Gallon (mpg)

Loading the ggpubr package for enhanced ggplot2 functionalities.
library (ggpubr)

Creating a boxplot with additional features using ggboxplot from ggpubr.

ggboxplot (tb,
y = "mpg", # Setting 'mpg' as the y-axis variable.
x = "am", # Setting 'am' as the x-axis variable.
color = "am", # Setting the outline color of the boxes

fill = "white", # Setting the fill color of the boxes.
palette = c("black", "blue"), # Defining a color palette .
shape = "am", # Defining the shape of data points based on 'am'.
orientation = "horizontal", # Setting the orientation
add = "jitter", # Adding jitter

facet.by = "cyl", # Faceting the plot by 'cyl'

title = "Boxplot of Mileage by Transmission, Cylinders",
ylab = "Miles Per Gallon (mpg)", # Label for the y-axis.
xlab = "Transmission" # Label for the x-axis.

15

Boxplot of Mileage by Transmission, Cylinders

am B9 0 B9 1

4 6 8
A A
A
Sl' = 14—
2 A
0
=
[72]
C
G olle . °
= 0+
[]

10 15 20 25 30 350 15 20 25 30 350 15 20 25 30 35
Miles Per Gallon (mpg)
Violin Plot across one Category using ggplot2

o We can embed boxplots within the above Violin plots, as follows. [2], [6]

Loading the ggplot2 package for data visualization.
library(ggplot2)

Creating a combined plot of violin and box plots using ggplot.
ggplot(tb, aes(x

factor(cyl), # Setting 'cyl' as the x-axis variable,
y = mpg)) + # Setting 'mpg' as the y-axis variable.
geom_violin(aes(fill = factor(cyl)), # Creating violin plots,
color = "black") + # Setting the outline color
scale_fill _manual(values = c("gold", "lightblue", "lightpink"),
name = "Cylinders") + # Setting the legend title.
geom_boxplot(width = 0.2, # Adding box plots with specified width.
fill = "white") + # Setting the box fill color to white.
coord_flip() + # Flipping the coordinates to create horizontal plots.
labs(title = "Violin, Box Plot of Mileage by Cylinders (cyl=4,6,8)",
y = "Miles Per Gallon (mpg)", # Label for the y-axis.
x = "Cylinders") + # Label for the x-axis.
theme_minimal() # Applying a minimal theme to the plot.

16

Violin, Box Plot of Mileage by Cylinders (cyl=4,6,8)

8
0 Cylinders
a
9) ml

1 BH__1 —=

10 15 20 25 30 %
Miles Per Gallon (mpg)

Summarizing Continuous Data using dplyr and ggplot2

Across one Category using dplyr and ggplot2

1. Calculating the mean and standard deviation

o We demonstrate the bivariate relationship between Miles Per Gallon (mpg) and Cylinders
(cyl) using ggplot2. [1], [2]

Loading the dplyr package for data manipulation.
suppressPackageStartupMessages (library(dplyr))

Using dplyr to calculate summary statistics for 'mpg' grouped by 'cyl'.
sl <= tb %>
group_by(cyl) %>% # Grouping the data by 'cyl'.
summarise(Mean_mpg = mean(mpg, na.rm = TRUE),
SD_mpg = sd(mpg, na.rm = TRUE))

Creating a table using the kable function with specified formatting.

kable(s1,
digits = 2,
caption = "Summary Statistics of Mileage (mpg) by Cylinders")

17

#

Table 0.1: Summary Statistics of Mileage (mpg) by Cylinders

cyl Mean mpg SD_mpg

4 26.66 4.51

6 19.74 1.45

8 15.10 2.56
. Discussion:

In this code, we use the pipe operator %\>% to perform a series of operations. We
first group the data by the cyl column using the group_by() function. We then use
summarise () to apply the mean() and sd() functions to the mpg column.

The results are stored in new columns, aptly named Mean_mpg and SD_mpg.

We set na.rm = TRUE in both mean() and sd() function calls, to remove any missing
values before calculation.

The data resulting from the above code consists of grouped cylinder counts (cyl), their
corresponding mean miles per gallon (Mean_mpg), and the standard deviation of miles

per gallon (SD_mpg). [1], [2]

. Visualizing the mean and standard deviation

A simple way to visualize this data is to create a line plot for the mean miles per gallon
with error bars indicating the standard deviation. Here is an example of how we could
do this with ggplot2:

Loading the ggplot2 package for data visualization.

suppressPackageStartupMessages (library(ggplot2))

Creating a line plot with error bars to visualize the Mean and SD.
ggplot(sl,
aes(x = cyl, y = Mean_mpg)) + # Defining the x and y aesthetics.
geom_line(group = 1, color = "blue") + # blue line connecting points.
geom_point(size = 2, color = "red") + # red points for the mean

geom_errorbar (aes(ymin = Mean_mpg - SD_mpg,
ymax = Mean_mpg + SD_mpg),
width = 0.2, colour = "black") + # Adding error bars
labs(x = "Cylinders", y = "Mean mpg", # Labeling the axes
title = "Mean and SD of Mileage (mpg) by #Cylinders") +
theme_minimal() # Applying a minimal theme to the plot.

18

Mean and SD of Mileage (mpg) by #Cylinders

30

25
o)
Q
S
c -1
@©
2 20

15

4 6 8
Cylinders

4. Discussion:

e aes(x = cyl, y = Mean_mpg) assigns the cyl values to the x-axis and Mean_mpg to the
y-axis.

e geom_line(group=1, color = "blue") adds a blue line connecting the data points.

e geom_point(size = 2, color = "red") adds red points for each data point.

o geom_errorbar(aes(ymin = Mean_mpg - SD_mpg, ymax = Mean_mpg + SD_mpg),
width = .2, colour = "black") adds error bars, where the error is the standard
deviation.

e The ymin and ymax arguments define the range of the error bars.

e labs(x = "Cylinders", y = "Mean mpg") labels the x and y axes.

o theme_minimal() applies a minimal theme to the plot. [1], [2]

5. Visualizing the mean and standard deviation - Alternate Method

e An alternate method is to visualize this mean by creating a bar plot, with error bars
indicating the standard deviation. Here is an example of how we could do this with
ggplot2:

Loading the ggplot2 package for data visualization.

library (ggplot2)

19

Creating a bar plot with error bars to visualize the Mean and SD.

ggplot(sl,
aes(x = cyl, y = Mean_mpg)) + # Defining the x and y aesthetics.
geom_bar(stat = "identity",

fill = "gold") + # Creating a bar plot with gold-colored bars.
geom_errorbar(aes(ymin = Mean_mpg - SD_mpg,
ymax = Mean_mpg + SD_mpg),
width = 0.2) + # Adding error bars .
labs(x = "Cylinders", y = "Mean mpg", # Labeling the axes
title = "Mean and SD of Mileage (mpg) by #Cylinders") +
theme_minimal() # Applying a minimal theme to the plot.

Mean and SD of Mileage (mpg) by #Cylinders

30 ——
o 20 T
Q- —— —
S
c
@
G) ——
=

10

0
4 6 8
Cylinders

6. Discussion:

o ggplot(sl, aes(x = cyl, y = Mean_mpg)): The ggplot() function initializes a gg-
plot object using dataframe s1 and mapping aesthetic elements. Here, aes(x = cyl,
y = Mean_mpg) specifies that the x-axis represents cyl (number of cylinders) and the
y-axis represents Mean_mpg (mean miles per gallon).

e geom_bar(stat = "identity", fill = "gold"): The geom_bar () function is used to
create a bar chart. Setting stat = "identity" indicates that the heights of the bars
represent the values in the data (in this case, Mean_mpg). The £ill = "gold" argument
sets the color of the bars.

20

#

geom_errorbar() adds error bars to the plot. The arguments aes(ymin = Mean_mpg
- SD_mpg, ymax = Mean_mpg + SD_mpg) set the bottom (ymin) and top (ymax) of the
error bars to represent one standard deviation below and above the mean, respectively.
width = .2 sets the horizontal width of the error bars.

labs(x = "Cylinders", y = "Mean mpg"): The labs () function is used to specify the
labels for the x-axis and y-axis.

theme minimal(): The theme minimal() function is used to set a minimalistic theme
for the plot. [1], [2]

. We extend this code to demonstrate how to measure the bivariate relationships between

multiple continuous variables from the mtcars data and the categorical variable number
of Cylinders (cyl), using ggplot2. Specifically, we want to measure the mean and SD of
continuous variables (i) Miles Per Gallon (mpg); (ii) Weight (wt); (iii) Horsepower (hp)
across the number of Cylinders (cyl).

Loading the dplyr package for data manipulation.

library(dplyr)

#
#

Calculating summary statistics for Mileage (mpg), Weight (wt), and
Horsepower (hp) grouped by Cylinders (cyl).

s3 <- tb %>%

group_by(cyl) %>%

summarise(
Mean_mpg = mean(mpg, na.rm = TRUE), # mean of Mileage (mpg).
SD_mpg = sd(mpg, na.rm = TRUE), # standard deviation of Mileage
Mean_wt = mean(wt, na.rm = TRUE), # mean of Weight (wt).
SD_wt = sd(wt, na.rm = TRUE), # standard deviation of Weight (wt).
Mean_hp = mean(hp, na.rm = TRUE), # mean of Horsepower (hp).
SD_hp = sd(hp, na.rm = TRUE) # standard deviation of (hp).

Creating a table (kable) to display the summary statistics.
kable(s3,
digits = 2,

caption = "Summary of Mileage, Weight, Horsepower by Cylinders")

Table 0.2: Summary of Mileage, Weight, Horsepower by Cylinders

cyl Mean_mpg SD_mpg Mean_wt SD_wt Mean_hp SD_hp

4 26.66 4.51 2.29 0.57 82.64 20.93
6 19.74 1.45 3.12 0.36 122.29 24.26

21

cyl Mean_mpg SD_ mpg Mean wt SD_ wt Mean hp SD_hp
8 15.10 2.56 4.00 0.76 209.21 50.98

8. Discussion:

o With tb %>%, we indicate that we are going to perform a series of operations on the tb
data frame. The group_by(cyl) groups the data by the cyl variable.

o The summarise() function calculates the mean and standard deviation (SD) of three vari-
ables (mpg, wt, and hp). Thena.rm = TRUE argument inside mean() and sd() functions
is used to exclude any NA values from these calculations.

o The resulting calculations are assigned to new variables (Mean_mpg, SD_mpg, Mean_wt,
SD_wt, Mean_hp, and SD_hp) which will be the columns in the summarised data frame.

o To summarize, this script groups the data in the tb tibble by cyl and then calculates
the mean and standard deviation of the mpg, wt, and hp variables for each group. [1], [2]

Across two Categories using ggplot2

1. We demonstrate the relationship between Miles Per Gallon (mpg) and Cylinders (cyl)
and Transmission type (am) using ggplot2. Recall that a car’s transmission may be
automatic (am=0) or manual (am=1). [1], [2]

Loading the dplyr package for data manipulation.
library(dplyr)

Calculating summary statistics for Mileage (mpg)
grouped by Cylinders (cyl) and Transmission (am).
s4 <- tb %>%
group_by(cyl, am) %>
summarise(
Mean_mpg = mean(mpg, na.rm = TRUE), # Calculating the mean.
SD_mpg = sd(mpg, na.rm = TRUE) # Calculating the standard deviation

)

“summarise ()~ has grouped output by 'cyl'. You can override using the ~.groups-
argument.

Creating a table (kable) to display the summary statistics
kable(s4,

22

digits = 2,
caption = "Summary of Mileage (mpg) by Cylinders and Transmission")

Table 0.3: Summary of Mileage (mpg) by Cylinders and Transmission

cyl am Mean_mpg SD_mpg

4 0 22.90 1.45
4 1 28.08 4.48
6 0 19.12 1.63
6 1 20.57 0.75
8 0 15.05 2.77
8 1 15.40 0.57

2. Discussion:

o The above code provides the mean and standard deviation of mpg for each unique com-
bination of cyl and am. [1], [2]

e Here is how it can be visualized:

Create the plot using ggplot2
Create an interaction variable for 'cyl' and 'am'
ggplot(s4, aes(x = interaction(cyl, am),
y = Mean_mpg, # Set 'Mean_mpg' as the y-axis variable
fill = as.factor(am))) + # Fill bars by the 'am' factor
geom_bar(stat = "identity", # Use the "identity" statistic to plot the bars
position = position_dodge()) + # Dodge the bars for each 'am' level

geom_errorbar(aes(ymin = Mean_mpg - SD_mpg, # Add error bars
ymax = Mean_mpg + SD_mpg),
width = .2, # Set the width of error bars
position = position_dodge(.9)) + # Dodge error bars
labs(x = "Cylinders and Transmission", # Set x-axis label

y = "Mean mpg", # Set y-axis label

fill = "Transmission", # Set legend title for fill color

title = "Mileage (mpg) by Cylinders and Transmission") +
theme_minimal() # Use the minimal theme for the plot

23

Mileage (mpg) by Cylinders and Transmission

Transmission
o
|||||| Illl
4.0 6.0 8.0 4.1 6.1 8.1

Cylinders and Transmission

30

N
o

Mean mpg

=
o

0

3. In the below code, the order of the variables is reversed - the data is first grouped by am,
then by cyl. So, the function first sorts the data by the am variable, and within each am
group, it further groups the data by cyl. [1], [2]

Load the dplyr library for data manipulation
library(dplyr)

Group the dataframe by 'am', 'cyl' columns and calculate summary statistics
sb <= tb %>%
group_by(am, cyl) %>
summarise (Mean_mpg = mean(mpg, na.rm = TRUE), # Calculate mean 'mpg'
SD_mpg = sd(mpg, na.rm = TRUE)) # Calculate standard deviation

~

“summarise () has grouped output by 'am'. You can override using the ~.groups”

argument .

Create a table (kable) of the summary statistics with specified formatting
kable(s5,

digits = 2, # Set the number of digits to display

caption = "Summary of Mileage (mpg) by Transmission and Cylinders")

24

Table 0.4: Summary of Mileage (mpg) by Transmission and Cylinders

am cyl Mean mpg SD_mpg

0 4 22.90 1.45
0 6 19.12 1.63
0 8 15.05 2.77
1 4 28.08 4.48
1 6 20.57 0.75
1 8 15.40 0.57

e Here is how it can be visualized:

Create the plot using ggplot2
ggplot (s,
aes(x = interaction(am, cyl), # ‘'am' and 'cyl' as the x-axis variable
y = Mean_mpg, # Mean 'mpg' as the y-axis variable
fill = as.factor(cyl))) + # Fill the bars by 'cyl' (Cylinders)

geom_bar(stat = "identity", # Create a bar plot with actual data values
alpha = 0.7, # Set the transparency of bars to 0.7
position = position_dodge()) + # Dodge bars for better visualization

geom_errorbar(aes(ymin = Mean_mpg - SD_mpg, # Add error bars
ymax = Mean_mpg + SD_mpg),
width = .2, # Set the width of the error bars
position = position_dodge(.9)) + # Dodge error bars

labs(x = "Transmission and Cylinders", # Set the x-axis label
y = "Mean mpg", # Set the y-axis label
fill = "Cylinders", # Set the legend label for fill color
title = "Mileage by Transmission (am=0,1) and Cylinders (cyl=4,6,8)") +

theme_minimal() # Use a minimal theme for the plot

25

Mileage by Transmission (am=0,1) and Cylinders (cyl=4,6,8)

Cylinders
4
s
8

0.4 1.4 0.6 1.6 0.8 1.8

Transmission and Cylinders

30

N
o

Mean mpg

=
o

0

4. The following code produces a new data frame that contains the mean and standard
deviation of the continuous variables mpg, wt, and hp for each combination of the factor
variables am and cyl. [1], [2]

Summary statistics 'mpg', 'wt', 'hp' by Transmission (am) and Cylinders (cyl)
s6 <= tb %>%

group_by(am, cyl) %>

summarise(

Mean_mpg = mean(mpg, na.rm = TRUE), # Calculate mean 'mpg'

SD_mpg = sd(mpg, na.rm = TRUE), # Calculate standard deviation of 'mpg'
Mean_wt = mean(wt, na.rm = TRUE), # Calculate mean 'wt' (weight)

SD_wt = sd(wt, na.rm = TRUE), # Calculate standard deviation of 'wt'
Mean_hp = mean(hp, na.rm = TRUE), # Calculate mean 'hp' (horsepower)
SD_hp = sd(hp, na.rm = TRUE) # Calculate standard deviation of 'hp'

)

“summarise ()~ has grouped output by 'am'. You can override using the ~.groups”

argument.

Create a table (kable) to display the summary statistics

kable(s6,
digits=2, # Set the number of decimal digits to display

26

caption = "mpg, wt, hp by am (am=0,1), cyl (cyl=4,6,8)")

Table 0.5: mpg, wt, hp by am (am=0,1), cyl (cyl=4,6,8)

am cyl Mean mpg SD_mpg Mean_wt SD_wt Mean_hp SD_hp

0 4 22.90 1.45 2.94 0.41 84.67 19.66
0 6 19.12 1.63 3.39 0.12 115.25 9.18
0 8 15.05 2.77 4.10 0.77 194.17 33.36
1 4 28.08 4.48 2.04 0.41 81.88 22.66
1 6 20.57 0.75 2.76 0.13 131.67 37.53
1 8 15.40 0.57 3.37 0.28 299.50 50.20

Summary of Chapter 13 — Bivariate Continuous data (Part 2 of 4)

In this chapter, we delve into the analysis of categorical and continuous data using the versatile
R packages dplyr and ggplot2. To begin, we prepare the mtcars dataset and save it as a
tibble named tb. After converting relevant columns into factor variables, we can directly access
the data columns without referencing tb$ for each variable.

We then explore various visualization techniques for continuous data within one category, em-
ploying ggplot2. These techniques include Bee Swarm plots, Histograms, Probability Density
Functions (PDF), Cumulative Density Functions (CDF), Box plots, and Violin plots. For in-
stance, we create a Bee Swarm plot to visualize the median weight of cars categorized by the
number of cylinders (cyl). Additionally, we construct histograms to display car mileage (mpg)
breakdown by transmission type (am), using separate histograms for each transmission cate-
gory for easier comparison. The PDF and CDF plots showcase the distribution of mpg with
distinct colors representing transmission types. Box plots and Violin plots provide insights
into mileage distribution across different cylinder counts and transmission types.

We then delve into summarizing continuous data using dplyr and ggplot2. Within one cat-
egory, such as the number of cylinders (cyl), we calculate and visualize summary statistics
like the mean and standard deviation of car mileage (mpg). We generate line plots and bar
plots with error bars, highlighting the relationship between cyl and the mean mpg. An alterna-
tive method of measuring bivariate relationships extends the analysis to multiple continuous
variables, namely mpg, wt (weight), and hp (horsepower) across cyl. A similar approach is
taken for relationships across two categories, where we explore the interaction between cyl
and transmission type (am). This analysis provides a comprehensive understanding of how to
summarize and visualize continuous data.

27

References

Basic R Programming;:

[1] Chambers, J. M. (2008). Software for Data Analysis: Programming with R (Vol. 2, No. 1).
Springer.

Crawley, M. J. (2012). The R Book. John Wiley & Sons.

Gardener, M. (2012). Beginning R: The Statistical Programming Language. John Wiley &
Sons.

Grolemund, G. (2014). Hands-On Programming with R: Write Your Own Functions and
Simulations. O’Reilly Media, Inc.

Kabacoff, R. (2022). R in Action: Data Analysis and Graphics with R and Tidyverse. Simon
and Schuster.

Peng, R. D. (2016). R Programming for Data Science (pp. 86-181). Leanpub.

R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. Retrieved from https://www.R-project.org/.

Tippmann, S. (2015). Programming Tools: Adventures with R. Nature, 517(7532), 109-110.

Wickham, H., Cetinkaya-Rundel, M., & Grolemund, G. (2023). R for Data Science. O’Reilly
Media, Inc.
geplot2:

[2] Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York. Retrieved from https://ggplot2.tidyverse.org

Wickham, H., & Grolemund, G. (2016). R for Data Science: Import, Tidy, Transform, Visu-
alize, and Model Data. O’Reilly Media.

Wickham, H. (2020). ggplot2: Create Elegant Data Visualisations Using the Grammar of
Graphics (Version 3.3.2) [Computer Software]. Retrieved from https://CRAN.R-project.org/
package=ggplot2

Wickham, H., et al. (2020). dplyr: A Grammar of Data Manipulation (Version 1.0.2) [Com-
puter Software|. Retrieved from https://CRAN.R-project.org/package=dplyr

Wilkinson, L. (2005). The Grammar of Graphics (2nd ed.). Springer-Verlag.

Wickham, H., et al. (2020). tibble: Simple Data Frames (Version 3.0.3) [Computer Software].
Retrieved from https://CRAN.R-project.org/package=tibble

beeswarm:

28

https://www.R-project.org/.
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tibble

[3] Eklund, A. (2020). ggbeeswarm: Categorical Scatter (Violin Point) Plots. R Package
Version 0.6.0. Retrieved from https://CRAN.R-project.org/package=ggbeeswarm

Histograms:

[4] Scott, D. W. (1979). On Optimal and Data-Based Histograms. Biometrika, 66(3), 605-
610.

Wand, M. P.; & Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall/CRC.

ggpubr:

[5] Kassambara, A. (2023). ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package
Version 0.6.0. Retrieved from https://rpkgs.datanovia.com/ggpubr/.

Box Plots:

[6] McGill, R., Tukey, J. W., & Larsen, W. A. (1978). Variations of Box Plots. The American
Statistician, 32(1), 12-16.

Appendix A

Appendix Al: Violin Plot across two Categories using ggplot2

e We can embed boxplots within the above Violin plots, as follows.

Load the ggplot2 library
library (ggplot2)

Violin plot and box plot of 'mpg' by 'cylinders' and 'am' (Transmission)
ggplot (tb, aes(x = factor(cyl), y = mpg)) +
geom_violin(aes(fill = factor(cyl)), color = "black") +
scale_fill_manual(values = c("gold", "lightblue", "lightpink"),
name = "Cylinders") +
geom_boxplot(width = 0.2,
fill = "white") + # A box plot with specified width, color
coord_flip() + # Flip the coordinates to create horizontal plots
labs(title = "Violin, Box Plot of Mileage (mpg) by cyl and am",
y = "Miles Per Gallon (mpg)", # Label for the y-axis
x = "Cylinders") + # Label for the x-axis

facet_grid(am ~ .,
scales = "free_y",
space = "free_y",

Create facets for 'am' (Transmission), scales and spacing

29

https://CRAN.R-project.org/package=ggbeeswarm
https://rpkgs.datanovia.com/ggpubr/.

labeller = labeller(
am = function(x) ifelse(x == 0, "Automatic", "Manual")

)) o+

theme_minimal() # Use a minimal theme for the plot

Violin, Box Plot of Mileage (mpg) by cyl and am

(e}
Jlewoimny

"4 @ ' Cylinders
-
5 i H:

8

enue

6 &

10 15 20 25 30 3
Miles Per Gallon (mpg)

¢ Alternately, We can embed boxplots within the above Violin plots, as follows.

Load the ggplot2 and dplyr libraries
library (ggplot2)
library(dplyr)

Modify the data first: Convert 'am' to factor with custom labels
tb_modified <- tb %>%
mutate(am = factor(am, levels = c(0, 1), labels = c("Automatic", "Manual")))

Create the plot
ggplot (tb_modified,
aes(x = factor(cyl),
y = mpg)) +
geom_violin(aes(fill = factor(cyl)),
color = "black") + # Create a violin plot by 'cylinders'
scale_fill_manual(values = c("gold", "lightblue", "lightpink"),

30

name = "Cylinders") + # Set custom fill colors
geom_boxplot(width = 0.2, fill = "white") + # Create a box plot
coord_flip() + # Flip the coordinates to create horizontal plots
labs(title = "Violin, Box Plot of Mileage (mpg) by cyl and am",
y = "Miles Per Gallon (mpg)", # Label for the y-axis

x = "Cylinders") + # Label for the x-axis
facet_grid(am ~ .,
scales = "free_y",
space = "free_y") + # Create facets for 'am' (Transmission)

theme _minimal() # Use a minimal theme for the plot

Violin, Box Plot of Mileage (mpg) by cyl and am

D
anewoiny

"4 @ ' Cylinders
-
5 i H.

8

enuep

6 &

10 15 20 25 30 %
Miles Per Gallon (mpg)

31

	Bivariate Continuous data (Part 2 of 4)
	Visualizing Continuous Data using ggplot2
	Bee Swarm Plot across one Category using ggbeeswarm
	Histograms across one Category using ggplot2
	Histograms across two Categories using ggplot2
	PDF across one Category using ggplot2
	CDF across one Category using ggplot2
	Box Plot across one Category using ggplot2
	Box Plot across two Categories using ggplot2
	Violin Plot across one Category using ggplot2

	Summarizing Continuous Data using dplyr and ggplot2
	Across one Category using dplyr and ggplot2
	Across two Categories using ggplot2

	Summary of Chapter 13 – Bivariate Continuous data (Part 2 of 4)
	References
	Appendix A
	Appendix A1: Violin Plot across two Categories using ggplot2

