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1. Linear regression is a statistical method for determining the relationship
between one or more independent variables and a dependent variable. It
is a simple and powerful data modeling and analysis tool that can assist in making
predictions or identifying trends.

2. The primary goal of linear regression is to identify the best-fitting line or plane
that describes the relationship between the independent and dependent variables. The
regression line or plane represents the predicted value of the dependent variable given a
particular value of the independent variable.

3. Linear regression, in its most basic form, involves fitting a straight line to a set of
data points. When there is only one independent variable, this is known as Simple
Linear Regression. When there are two or more independent variables, it is known as
Multiple Linear Regression.

4. Linear regression makes several data assumptions, including that the relationship be-
tween the independent and dependent variables is linear, the errors or residuals are
normally distributed, and there is no multicollinearity (high correlation) among the in-
dependent variables.

5. Linear regression can be used for a variety of purposes, including forecasting sales, pre-
dicting future trends, and estimating the impact of various variables on a specific outcome.
It is widely used in a variety of fields, including economics, marketing, finance and social
sciences. [1]

Business Applications of Linear Regression

Marketing

1. Sales forecasting: Using historical data and other factors such as pricing, advertis-
ing, and promotional activities, linear regression can be used to forecast future sales.
This can assist marketers in optimizing their marketing mix and increasing sales
performance.
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2. Customer segmentation: Linear regression can be used to analyze customer
groups based on demographic, psychographic, and behavioral characteristics.
Marketers can use this information to tailor their marketing messages and offerings to
specific customer segments.

3. Product development: Linear regression can be used to characterize the product
features and attributes that are most important to customers and then optimize
the product design and development process accordingly.

4. Advertising effectiveness: Multiple linear regression can be used to measure the effec-
tiveness of advertising campaigns and to identify the most effective advertising messages
and media channels for reaching and persuading target customers. [2]

Finance

• Portfolio management: Linear regression can be used to examine the relationship
between various variables such as interest rates, inflation, and market volatility, as well
as to optimize portfolio allocation and risk management strategies.

• Credit scoring: Using Linear regression, credit scoring models can be created that
predict the likelihood of default based on factors such as credit history, income, and
employment status.

• Asset pricing: Linear regression can be used to estimate the fair value of assets
such as stocks, bonds, and options by analyzing the relationship between various factors
such as earnings, dividends, and market trends.

• Financial forecasting: Using historical data and other factors such as macroeconomic
indicators and industry trends, Linear regression can be used to forecast financial
outcomes such as revenue, earnings, and cash flow.

• Risk management: Linear regression can be used to analyze the relationship be-
tween different risk factors, such as interest rates, exchange rates, and com-
modity prices, and to develop risk management strategies that reduce exposure to
these risks. [3]

Organizational Behavior

Linear Regression can be used to investigate various aspects of organizational behavior, such
as employee performance, workforce diversity, leadership effectiveness, organizational culture,
and employee well-being.

• Employee performance: Linear regression can be used to investigate the relationship
between various factors like job satisfaction, motivation, and training and employee
performance outcomes like productivity, job satisfaction, and turnover.
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• Workforce diversity: Linear regression can be used to examine the relationship be-
tween demographic diversity, cultural diversity, and social diversity and organizational
outcomes such as creativity, innovation, and problem-solving.

• Leadership effectiveness: Linear regression can be used to examine the relationship
between various factors like leadership style, communication, and decision-making and
leadership outcomes like employee motivation and job satisfaction.

• Organizational culture: Linear regression can be used to investigate the relationship
between organizational values, norms, and beliefs and organizational outcomes such as
employee engagement, retention, and performance.

• Employee well-being: Multiple linear regression can be used to examine the relation-
ship between work-life balance, social support, and job demands and employee well-being
outcomes such as stress, burnout, and health. [4]
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Simple Linear Regression

Overview

1. Simple linear regression is used to model the relationship between a dependent variable
and a single independent variable.

2. The goal of simple linear regression is to find the best fit line.

3. The best fit line is determined by minimizing the sum of the squared distances
between the actual and predicted values of the dependent variable based on the
independent variable.

4. The independent variable is plotted on the x-axis, and the dependent variable is plotted
on the y-axis, to create a scatter plot and visualize the best fit line. [5]

Model of Simple Linear Regression

1. The model equation for a simple linear regression model is:

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀 (0.1)

• 𝑦 is the dependent variable
• 𝑥 is the independent variable
• 𝛽0 is the intercept (the value of 𝑦 when 𝑥 = 0)
• 𝛽1 is the slope (the change in y for a one-unit change in x)
• 𝜀 is the error term (represents the random variability in the data)

2. The goal of the simple linear regression model shown in (0.1), is to estimate the values
of 𝛽0 and 𝛽1 given that minimize the sum of squared errors (SSE) between the
observed values of 𝑦 and the predicted values of 𝑦.

3. There are several methods for estimating the values of 𝛽0 and 𝛽1, the most common of
which is the called Ordinary Least Squares (OLS).
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4. The Ordinary Least Squares (OLS) method calculates the values of

𝛽0 and 𝛽1 that minimize the sum of squared errors (SSE) between the observed and
predicted values of 𝑦.

5. After estimating the values of 𝛽0 and 𝛽1, the model can be used to predict the value
of 𝑦, for any given value of 𝑥. [6]

Running Simple Linear Regression in R

Goal

• Consider the mtcars data. Suppose we need to fit a simple linear regression model to
predict mpg (miles per gallon) based on the predictor variable: wt (weight).

• We would like to estimate it using Ordinary Least Squares.

Steps

# load mtcars dataset
data(mtcars)

# fit a simple linear regression model
model0 <- lm(mpg ~ wt, data = mtcars)

# print the model summary
summary(model0)

Call:
lm(formula = mpg ~ wt, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.5432 -2.3647 -0.1252 1.4096 6.8727

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
wt -5.3445 0.5591 -9.559 1.29e-10 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

1. Using the lm() function in R, we can fit a simple linear regression model in which the
dependent variable (mpg) is regressed on the independent variable (wt).

2. The data argument specifies the dataset, and mpg ~ wt specifies the linear regression
model formula, where mpg is the dependent variable and wt is the independent variable.

3. The summary() function is called to print the model’s results. The output gives the
estimated coefficients, standard errors, t-statistics, and p-values for each variable in the
model, as well as the overall R-squared value and other statistics related to model fit.

4. Substituting the values of 𝛽 coefficients from the above regression output, we can write
the model as follows.

𝑚𝑝𝑔 = 37.2851 − 5.3445𝑤𝑡 + 𝜀 (0.2)

Visualizing Simple Linear Regression in R

Goal

• Suppose we need to visualize the above simple linear regression model to predict mpg
(miles per gallon) based on the predictor variable: wt (weight).

• One way of doing this is to create a scatter plot.

Steps

# plot the data and the regression line
plot(mtcars$wt,

mtcars$mpg,
main = "Simple Linear Regression",
xlab = "Weight (in 1000 lbs)",
ylab = "Miles per Gallon")

abline(model0, col = "red")
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1. We create a scatter plot of the data using the plot() function, where the x-axis represents
the weight of the car in thousands of lbs, and the y-axis represents the miles per gallon.

2. We also use the main and xlab, ylab arguments to add a title and axes labels.

3. Finally, we use the abline() function to add the regression line to the plot, which takes
the model object as an argument and plots the regression line. Using the col argument,
we change the color of the line.

4. This code generates a scatter plot of the data with the regression line overlaid on top,
allowing us to easily visualize the relationship between the dependent and independent
variables. [7]
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Multiple Linear Regression

Overview

1. Multiple linear regression is a statistical technique used to model the relationship between
a dependent variable and multiple independent variables.

2. The goal of multiple linear regression is to find the linear equation that best ex-
plains the relationship between the dependent variable and the independent variables.
[8]

Model of Multiple Linear Regression

1. The model equation for a multiple linear regression model with p independent variables
is:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + … + 𝛽𝑝𝑥𝑝 + 𝜀 (0.1)

• 𝑦 is the dependent variable
• 𝑥1, 𝑥2, …, 𝑥𝑝 are the independent variables
• 𝛽0 is the intercept (the value of 𝑦 when all independent variables are 0)
• 𝛽1, 𝛽2, …, 𝛽𝑝 are the coefficients that represent the change in 𝑦 for a one-unit change in

each independent variable, holding all other variables constant
• 𝜀 is the error term (represents the random variability in the data)

The model given in (0.1) is the most popular regression model.

Ordinary Least Squares (OLS) Estimation

1. Ordinary Least Squares (OLS) regression is the most widely used statistical estimation
method for multiple linear regression.

2. OLS estimates the values of 𝛽0, 𝛽1, 𝛽2, …, 𝛽𝑝 that minimize the sum of squared
errors (SSE) between the observed values of 𝑦 and the predicted values of 𝑦.
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3. Once the values of 𝛽0, 𝛽1, 𝛽2, …, 𝛽𝑝 have been estimated, the model can be used to
predict the value of 𝑦 for any given values of 𝑥1, 𝑥2, …, 𝑥𝑝. [8]

Running Multiple Linear Regression using OLS in R

Goal

• Consider the mtcars data. Suppose we need to fit a multiple linear regression model to
predict mpg (miles per gallon) based on the predictor variables: disp (displacement), hp
(horsepower), and wt (weight) and cyl (number of cylinders).

• We would like to estimate it using Ordinary Least Squares.

Steps

1. At the outset, we need to ensure that the data types are correct

# Load the mtcars dataset
data(mtcars)

# `cyl` (number of cylinders) needs to set as a factor
mtcars$cyl <- as.factor(mtcars$cyl)

# verify that `cyl` is a factor
str(mtcars$cyl)

Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...

# verify that `mpg`, `disp`, `hp`, `wt` are numeric
str(mtcars$mpg)

num [1:32] 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...

str(mtcars$disp)

num [1:32] 160 160 108 258 360 ...
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str(mtcars$hp)

num [1:32] 110 110 93 110 175 105 245 62 95 123 ...

str(mtcars$wt)

num [1:32] 2.62 2.88 2.32 3.21 3.44 ...

2. Now, we can run the multiple linear regression.

# Fit a multiple linear regression model
model <- lm(mpg ~ disp + hp + wt + cyl,

data = mtcars)

# View the summary of the model
summary(model)

Call:
lm(formula = mpg ~ disp + hp + wt + cyl, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.2740 -1.0349 -0.3831 0.9810 5.4192

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.002405 2.130726 16.897 1.54e-15 ***
disp 0.004199 0.012917 0.325 0.74774
hp -0.023517 0.012216 -1.925 0.06523 .
wt -3.428626 1.055455 -3.248 0.00319 **
cyl6 -3.466011 1.462979 -2.369 0.02554 *
cyl8 -3.753227 2.813996 -1.334 0.19385
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.482 on 26 degrees of freedom
Multiple R-squared: 0.8578, Adjusted R-squared: 0.8305
F-statistic: 31.37 on 5 and 26 DF, p-value: 3.18e-10
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• The lm() function is used to fit the model, and the data argument specifies the mtcars
dataset.

• The model formula specifies that mpg is the response variable and cyl, disp, hp, and wt
are the predictor variables. The data argument specifies the dataset that the variables
are taken from, which in this case is the mtcars dataset.

• Recall that cyl is a categorical, factor variable that takes three levels 𝑐𝑦𝑙 = 4, 6, 8
corresponding to four, six and eight cylinder cars.

• R sets the level 𝑐𝑦𝑙 = 4 to be the base level by default. It creates two dummy vari-
ables cyl6 and cyl8 corresponding to six and eight cylinder cars. We have, cyl6=1 for
six cylinder cars, cyl6=0 otherwise. We have, cyl8=1 for eight cylinder cars, cyl8=0
otherwise.

• The beta coefficient estimate for cyl6 represents the expected difference in mpg between
cars with six cylinders and cars with four cylinders.

• The equation for the multiple linear regression model to predict mpg (miles per gallon)
based on the predictor variables: disp (displacement), hp (horsepower), and wt (weight)
and cyl (number of cylinders) is given as follows:

𝑚𝑝𝑔 = 36.0024 + 0.0042𝑑𝑖𝑠𝑝 − 0.0235ℎ𝑝 − 3.4286𝑤𝑡 − 3.4660𝑐𝑦𝑙6 − 3.7532𝑐𝑦𝑙8 + 𝜀 (0.2)

4. The summary() function is used to view a summary of the model, which includes infor-
mation such as the coefficients for each predictor variable, the standard errors, t-values,
and p-values for each coefficient, the R-squared value, and more. This summary output
can be used to interpret the results of the multiple linear regression model. [9]

Output of Multiple Linear Regression using OLS in R

Beta Coefficients Estimates

1. The beta coefficient estimate for a predictor variable represents the change in the
response variable that is associated with a one-unit increase in that predic-
tor variable, while holding all other predictor variables constant. In other words, it
represents the effect that each predictor variable has on the response variable, after
controlling for the effects of all other predictor variables in the model.

2. In the output of the multiple linear regression model, the “Coefficients” table shows the
estimates of the beta coefficients (also known as regression coefficients or slope coeffi-
cients) for each predictor variable in the model. [9]

3. We can use the following code to extract the beta coefficients.
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betas = model$coefficients
round(betas,4)

(Intercept) disp hp wt cyl6 cyl8
36.0024 0.0042 -0.0235 -3.4286 -3.4660 -3.7532

4. We can also visualize the beta coefficients. We use coefplot() in the arm package to plot
the coefficients and their 95% credible intervals.

# Load the arm package
library(arm)

Loading required package: MASS

Loading required package: Matrix

Loading required package: lme4

arm (Version 1.13-1, built: 2022-8-25)

Working directory is /cloud/project

# Use coefplot() to plot the coefficients of the model
coefplot(model)

Regression Estimates
−8 −6 −4 −2 0 2

disp

hp

wt

cyl6

cyl8
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Interpretation of beta coefficient estimates [9]

Example 1:

• The beta coefficient estimate for disp represents the estimated change in
the “mpg” response variable associated with a one-unit increase in the disp
predictor variable, while holding all other predictors constant.

• The beta coefficient estimate for disp is 0.004199. This means that, on average, as the
disp variable (engine displacement, in cubic inches) increases by one unit,
the predicted mpg value for the car increases by 0.004199 units, while holding
all other predictor variables constant.

• However, as the p-value for disp is greater than the chosen threshold of 0.05, there is no
evidence to suggest that this change is statistically significant at the 5% level,
after controlling for the effects of the other predictor variables in the model. Therefore,
it may not be appropriate to make any conclusive statements about the relationship
between disp and mpg based solely on the beta coefficient estimate for disp in this
model.

Example 2:

• The the beta coefficient estimate for wt represents the estimated change in the
mpg response variable associated with a one-unit increase in the wt predictor
variable, while holding all other predictors constant.

• The beta coefficient estimate for wt is -3.428626. This means that, on average, as the
wt variable (weight of the car in thousands of pounds) increases by one unit,
the predicted mpg value for the car decreases by 3.428626 units, while holding
all other predictor variables constant.

Example 3:

• The beta coefficient estimate for cyl6 is -3.466011. This means that, on average, cars
with six cylinders have a predicted “mpg” value that is 3.466011 lower than cars with
four cylinders, after accounting for the effects of the other predictor variables in the
model.

• Similarly, the beta coefficient estimate for cyl8 is -3.753227. This means that, on average,
cars with eight cylinders have a predicted mpg value that is 3.753227 lower than cars
with four cylinders, after accounting for the effects of the other predictor variables in the
model.
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Standard Errors

1. In multiple linear regression, the standard error is a measure of the variability of
the estimated coefficients of the predictor variables in the model.

2. It reflects the variability of the estimated coefficients due to the random error in the data.
It represents the average amount that the estimated coefficients would vary
if we fit the same model to different samples of data from the population.

3. The standard error is estimated from the residual standard error of the model, which is
a measure of the variability of the residuals or the differences between the predicted and
observed values of the response variable.

4. A smaller standard error means a more precise estimate of the coefficient, and
more likely to accurately reflect the true relationship between the independent variable
and the dependent variable. [9]

Example 1:

1. In the output of the linear regression model, “Std. Error” of wt refers to the standard
error of the estimate for the coefficient of the independent variable wt (weight of the
car).

2. The “Std. Error” of wt is given as 1.0554. This means that the estimated coefficient for
wt is expected to vary by about 1.0554 units across different samples of data that could
have been collected. [9]

t-values and p-values

1. The t-value measures the number of standard errors the estimated coefficient
is away from zero. It is calculated by dividing the estimated coefficient by
its standard error.

2. A higher absolute t-value suggests that the estimated coefficient is more
significant and more likely to accurately reflect the true relationship between the inde-
pendent variable and the dependent variable.

3. It’s important to note that the t-value is used to calculate the p-value for the coefficient
estimate. A small p-value indicates that the coefficient is statistically significant and not
likely to have occurred by chance.

4. The p-value is the probability of observing a t-value as extreme or more
extreme than the observed t-value, assuming that the true coefficient is zero.

14



5. A small p-value indicates that it is unlikely that the observed t-value occurred by chance,
and suggests that the true coefficient is not zero (i.e., there is a statistically significant
relationship between wt and mpg). [9]

Example 1:

1. In the output, the “t-value” of wt is given as -3.248. This means that the estimated
coefficient for wt is -3.248 standard errors away from zero.

2. A negative t-value indicates that there is an inverse relationship between the
independent variable and the dependent variable. Since the t-value is rela-
tively large (in absolute value) and negative, it suggests that the estimated
coefficient for wt is statistically significant and has a significant impact on the
dependent variable (mpg).

3. In this case, the p-value for wt is 0.00319, indicating that the estimated coefficient for
wt is statistically significant and has a significant impact on the dependent variable.

4. In the output, the “t-value” of wt is -3.248, and the degrees of freedom for the t-
distribution is 26 (which is the sample size minus the number of parameters estimated
in the model).

[9]

Interpretation of p-value, Pr(>|t|)

Example 2:

1. In the output, the beta coefficient estimate for disp is 0.004199 with a standard error
of 0.012917, a t-value of 0.325, and a p-value of 0.74774.

2. The p-value for disp is greater than the chosen threshold of 0.05, indicating that the
beta coefficient estimate for “disp” is not statistically significant at the 5% level. This
means that, after controlling for the effects of the other predictor variables in the model,
there is no evidence to suggest that the disp variable has a significant linear relationship
with the mpg response variable.

3. Therefore, the disp variable is not a significant predictor of the mpg response variable in
the model. [9]

Example 3:

1. In the output, the beta coefficient estimate for wt is -3.428626 with a standard error of
1.055455, a t-value of -4.223, and a p-value of 0.0002.

2. The p-value for wt is less than the chosen threshold of 0.05, indicating that the beta
coefficient estimate for wt is statistically significant at the 5% level.
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3. This means that, after controlling for the effects of the other predictor variables in
the model, there is evidence to suggest that the wt variable has a significant linear
relationship with the mpg response variable. [9]

Example 4:

1. In the output, the beta coefficient estimate for cyl_6 is -3.466011 with a standard error
of 1.462979, a t-value of -2.369, and a p-value of 0.02554. Similarly, the beta coefficient
estimate for cyl_8 is -3.753227 with a standard error of 2.813996, a t-value of -1.334,
and a p-value of 0.19385.

2. The p-value for cyl_6 is greater than the chosen threshold of 0.05, indicating that the
beta coefficient estimate for cyl_6 is not statistically significant at the 5% level.

3. This means that, after controlling for the effects of the other predictor variables in the
model, there is no evidence to suggest that the average mpg for cars with six cylinders is
significantly different from that for cars with four cylinders.

4. On the other hand, the p-value for cyl_8 is less than 0.05, indicating that the beta
coefficient estimate for cyl_8 is statistically significant at the 5% level.

5. This means that, after controlling for the effects of the other predictor variables in the
model, there is evidence to suggest that the average mpg for cars with eight cylinders is
significantly different from that for cars with four cylinders.

6. Also, the negative beta coefficient estimate for cyl_8 indicates that, on average, cars
with eight cylinders have a lower predicted mpg value than cars with four cylinders,
while holding all other predictor variables constant. [9]

Confidence Intervals

1. In multiple linear regression, the confidence interval can be interpreted as a range of
values that we are x% confident contains the true population coefficient, where
x is the chosen level of confidence.

2. The most common level of confidence is 95%, but other levels of confidence, such
as 90% or 99%, can also be used.

3. The confidence interval is based on the standard error and the t-distribution, which
takes into account the sample size and the degrees of freedom of the model.

4. In the output of the linear regression model, we can calculate the confidence interval
for the beta coefficient of wt (weight of the car) at a desired confidence level (e.g., 95%)
using the t-distribution.

5. The following code will output the confidence intervals
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# View the 95% confidence intervals of the estimated coefficients
confint(model, level = 0.95)

2.5 % 97.5 %
(Intercept) 31.62263411 40.382174889
disp -0.02235276 0.030750496
hp -0.04862749 0.001594483
wt -5.59814537 -1.259106203
cyl6 -6.47320809 -0.458813851
cyl8 -9.53747788 2.031023933

6. In the output, the confidence intervals of the estimated coefficients are displayed in a
table with two columns, “2.5 %” and “97.5 %”.

7. For example, the confidence interval for the estimated coefficient of wt is (-5.985, -1.617),
which means that we are 95% confident that the true population coefficient for wt lies
within this range.

8. If the confidence interval for a coefficient does not include 0, we can conclude
that the corresponding predictor variable is likely to be a significant predictor
of the response variable at the 5% level of significance.

9. The formula for the confidence interval in multiple linear regression is: 𝐶𝐼 = 𝛽 ± 𝑡 ∗ 𝑆𝐸,
where $t” represents the t-value and 𝑆𝐸 represents the Standard Error.

• the coefficient estimate is the point estimate of the coefficient,
• the t-value is the critical value from the t-distribution with 𝑛 − 𝑝 − 1 degrees of freedom,

where
• 𝑛 is the sample size and 𝑝 is the number of predictor variables in the model,
• the standard error 𝑆𝐸 is a measure of the variability of the estimated coefficient
• The critical value from the t-distribution depends on the level of confidence and the

degrees of freedom. For example, for a 95% confidence interval with 25 observations and
3 predictor variables, the critical value is approximately 2.306. [10]

Visualizing Multiple Linear Regression in R

Goal

• Suppose we need to visualize the above multiple linear regression model to predict mpg
(miles per gallon) based on multiple predictor variables.

• There is no good way of doing this. One limited way of doing this is to create a scatter
plot matrix.
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Steps

# Create a scatterplot matrix of the variables
library(car)

Loading required package: carData

Attaching package: 'car'

The following object is masked from 'package:arm':

logit

scatterplotMatrix(~mpg + wt + hp + disp,
data = mtcars)

# Add the regression line to the scatterplot matrix
abline(model, col = "blue")

Warning in abline(model, col = "blue"): only using the first two of 6
regression coefficients
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2
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1. This code will create a scatterplot matrix of the variables (mpg, wt, hp, disp) in the
mtcars data set, and will add a regression line to the plot to visualize the relationship
between mpg, wt, hp,‘disp.

2. The scatterplot matrix will show the scatterplots of all three variables, and the regression
line will show the predicted relationship between mpg, wt, hp, disp.

3. Note that we will need to have the car package installed in order to create the scat-
terplot matrix. If we don’t have the package installed, we can install it by running
install.packages("car").

Residuals and Residual Standard Error

Residuals

1. In the output of the linear regression model, “Residuals” refer to the differences be-
tween the predicted values of the dependent variable (mpg) and the actual
observed values of the dependent variable in the dataset (mtcars).

2. The residuals are important to examine because they can provide information about the
accuracy of the model. Ideally, the residuals should be normally distributed
around zero, indicating that the model is accurately predicting the values of the de-
pendent variable. If the residuals are not normally distributed or have a pattern, this
could indicate that the model is not accurately predicting the values of the dependent
variable and may require further refinement.

3. In the above example, the residuals are the differences between the predicted values
and actual values of the dependent variable cyl, which cannot be explained by the
independent variables (cyl, disp, hp, and wt) included in the model.

4. Analyzing the residuals can help us check whether the assumptions of the multiple lin-
ear regression model are met, and can also help us identify outliers or influential
observations that may be affecting the model fit.

# Review the Residuals
summary(model)

Call:
lm(formula = mpg ~ disp + hp + wt + cyl, data = mtcars)

Residuals:
Min 1Q Median 3Q Max
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-4.2740 -1.0349 -0.3831 0.9810 5.4192

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.002405 2.130726 16.897 1.54e-15 ***
disp 0.004199 0.012917 0.325 0.74774
hp -0.023517 0.012216 -1.925 0.06523 .
wt -3.428626 1.055455 -3.248 0.00319 **
cyl6 -3.466011 1.462979 -2.369 0.02554 *
cyl8 -3.753227 2.813996 -1.334 0.19385
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.482 on 26 degrees of freedom
Multiple R-squared: 0.8578, Adjusted R-squared: 0.8305
F-statistic: 31.37 on 5 and 26 DF, p-value: 3.18e-10

5. In the output, the “Residuals” section includes information about the minimum and
maximum residuals, as well as the first and third quartiles, the median of the residuals.
This information can be used to assess the distribution and potential patterns in the
residuals.

6. To extract the residuals from a multiple linear regression model in R, we can use the
resid() function on the model object.

# Extract the residuals
residuals <- resid(model)

7. We can also create a scatter plot of the residuals against the fitted values (pre-
dicted values) to visually inspect whether the assumptions of the model are met:

# Plot the residuals against the fitted values
plot(fitted(model), residuals,

xlab = "Fitted Values",
ylab = "Residuals",
main = "Residual Plot")
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8. This will create a scatter plot of the residuals against the fitted values In this
plot, we want to see a random scatter of points around the horizontal zero line, indicating
that the residuals have a mean of zero and are evenly distributed across the range of
fitted values.

9. If we see any patterns or trends in the residuals, such as a curved shape or a U-shape,
this may indicate that the assumptions of the multiple linear regression model are not
met and that the model may need to be modified or improved.

10. We can also calculate summary statistics for the residuals, such as the mean, stan-
dard deviation, and range, using the summary() function on the residuals object.

summary(residuals)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-4.2740 -1.0349 -0.3831 0.0000 0.9810 5.4192

\[11\]

Residual Standard Error

1. In the output of the linear regression model, “Residual standard error” refers to the
standard deviation of the residuals.

2. It indicates how much the predicted values of the dependent variable deviate from the
actual observed values, on average.
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3. A lower residual standard error indicates that the model is better at predicting the values
of the dependent variable.

4. The residual standard error provides a measure of the amount of variation in the depen-
dent variable (mpg) that is not explained by the independent variables (cyl, disp, hp,
and wt) included in the model.

5. In R, we can extract the RSE from a multiple linear regression model using the summary()
function on the model object.

# Extract the RSE
rse <- summary(model)$sigma
rse

[1] 2.481678

5. In the output, the “Residual standard error” value is given as 2.639. This means that, on
average, the predicted values of mpg deviate from the actual observed values by about
2.639 units.

6. It’s important to note that the residual standard error should be considered in the
context of the range of values of the dependent variable. In this case, since
the range of mpg values in the mtcars dataset is 10.4 to 33.9, a residual standard error
of 2.639 might be considered reasonable, indicating that the model is making relatively
accurate predictions of the dependent variable. [11]

Model Fit in Multiple Linear Regression

1. The model fit in multiple linear regression refers to how well the regression model fits
the observed data. There are several measures of model fit that can be used to evaluate
the performance of a multiple linear regression model.

2. R-squared: One commonly used measure of model fit is the R-squared value, which
represents the proportion of the total variability in the response variable that is explained
by the predictor variables in the model.

• R-squared is a statistical measure that represents the proportion of variance in the de-
pendent variable that can be explained by the independent variables in the model.

• R-squared is sometimes called the coefficient of determination or the goodness-of-fit
measure.

• R-squared ranges from 0 to 1, with higher values indicating that the model explains
a greater proportion of the variance in the dependent variable.
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• An R-squared of 0 indicates that the model does not explain any of the variance in the
dependent variable, while an R-squared of 1 indicates that the model perfectly explains
all of the variance in the dependent variable.

• However, it is important to note that a high R-squared does not necessarily mean
that the model is a good fit for the data or that it will be a good predictor. For
example, an overfitted model that includes too many predictor variables may have a high
R-squared, but it may not generalize well to new data.

• Additionally, an R-squared of 0 does not necessarily mean that the model is not useful,
as it may still provide some insight into the relationships between the variables in the
model.

3. Adjusted R-squared:

• The adjusted R-squared is a statistical measure of fit that accounts for the number
of predictor variables included in the model.

• Recall that the R-squared indicates the proportion of variation in the dependent variable
(the variable we are trying to predict) that can be explained by the independent variables
(the predictors) in the model.

• However, as we add more variables to the model, the R-squared value will typically
increase, even if the added variables do not actually improve the model’s ability to
predict the dependent variable.

• To address this issue, the “Adjusted R-squared” statistic adjusts for the number
of predictor variables in the model. It penalizes models that include more variables
that do not improve the model’s ability to predict the dependent variable.

• The adjusted R-squared is calculated using the following formula: 𝐴𝑑𝑗𝑅𝑆𝑞𝑢𝑎𝑟𝑒𝑑 =
1−[(1−𝑅𝑆𝑞𝑢𝑎𝑟𝑒𝑑)∗(𝑛−1)/(𝑛−𝑘 −1)], where 𝑛 is the sample size and 𝑘 is the number
of predictor variables in the model.

• The Adjusted R-squared will always be lower than the R-squared, since it adjusts for
the number of predictor variables.

• A higher Adjusted R-squared value indicates that the model is a better fit
for the data, as it indicates that more of the variation in the dependent variable is
being explained by the independent variables, and not just due to chance or noise.

4. F-statistic:

• In linear regression, the F-statistic is a statistical measure that is used to test the
overall significance of the model.

• It measures the ratio of the explained variance to the unexplained variance in
the dependent variable.
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• It is calculated by dividing the mean square for the model by the mean square for the
residuals.

• The F-statistic is based on the null hypothesis that all of the coefficients in the
model are equal to zero, indicating that the independent variables do not have any
effect on the dependent variable.

• The alternative hypothesis is that at least one of the coefficients in the model
is not equal to zero, indicating that the independent variables do have an effect on
the dependent variable.

• If the F-statistic is large and the associated p-value is small, this provides
evidence against the null hypothesis and suggests that the model is a good fit for the
data.

• However, if the F-statistic is small and the associated p-value is large, this suggests that
the model is not a good fit for the data, and that the null hypothesis cannot be rejected.

• It is important to note that while the F-statistic tests the overall significance of the
model, it does not provide information about the individual significance of
the coefficients or the relative importance of the predictor variables.

Calculating R-squared, Adjusted R-squared, F-statistic in R

1. We can read the R-squared, Adjusted R-squared, F-statistic from the output of the
summary() function.

# Display the model summary
summary(model)

Call:
lm(formula = mpg ~ disp + hp + wt + cyl, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.2740 -1.0349 -0.3831 0.9810 5.4192

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.002405 2.130726 16.897 1.54e-15 ***
disp 0.004199 0.012917 0.325 0.74774
hp -0.023517 0.012216 -1.925 0.06523 .
wt -3.428626 1.055455 -3.248 0.00319 **
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cyl6 -3.466011 1.462979 -2.369 0.02554 *
cyl8 -3.753227 2.813996 -1.334 0.19385
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.482 on 26 degrees of freedom
Multiple R-squared: 0.8578, Adjusted R-squared: 0.8305
F-statistic: 31.37 on 5 and 26 DF, p-value: 3.18e-10

2. Alternately, we can also extract the R-squared, Adjusted R-squared, F-statistic, as fol-
lows.

# Extract the R-squared
r_squared <- summary(model)$r.squared

# Extract the adjusted R-squared
adj_r_squared <- summary(model)$adj.r.squared

# Print the adjusted R-squared
cat("R-squared:", r_squared, "\n")

R-squared: 0.8577974

cat("Adjusted R-squared:", adj_r_squared, "\n")

Adjusted R-squared: 0.8304507

# Extract the F-statistic and its associated p-value
f_statistic <- summary(model)$fstatistic[1]

# Print the F-statistic and its associated p-value
cat("F-statistic:", f_statistic, "\n")

F-statistic: 31.36754

Model Prediction in Multiple Linear Regression

1. In multiple linear regression, model prediction refers to the process of using the model
to make predictions about the value of the dependent variable based on the values of the
independent variables.
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2. To make a prediction using a multiple linear regression model, we first need to spec-
ify the values of the independent variables for the observation we want to predict the
dependent variable for.

3. Then, we use the coefficients estimated by the model to calculate the predicted value of
the dependent variable.

4. Recall that the multiple linear regression equation can be written as: 𝑦 = 𝛽0 + 𝛽1𝑥1 +
𝛽2𝑥2 +…+𝛽𝑝𝑥𝑝 +𝜀, where 𝑦 is the dependent variable, 𝑥1, 𝑥2, …, 𝑥𝑝 are the independent
variables, 𝛽0 is the intercept, and 𝛽1, 𝛽2, …, 𝛽𝑝 are the coefficients for the independent
variables. 𝜀 represents the error term or residual, which represents the difference between
the predicted value of 𝑦 and the actual value of 𝑦.

5. To make a prediction using this equation, we would substitute the values of 𝑥1, 𝑥2,
…, 𝑥𝑝 into the equation and calculate the predicted value of 𝑦.

Prediction in Multiple Linear Regression in R

1. In R, we can make predictions using the fitted multiple linear regression model. For
reference, let us summarize the model, we will be using for prediction.

# View the model summary to assess its performance and significance
summary(model)

Call:
lm(formula = mpg ~ disp + hp + wt + cyl, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.2740 -1.0349 -0.3831 0.9810 5.4192

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.002405 2.130726 16.897 1.54e-15 ***
disp 0.004199 0.012917 0.325 0.74774
hp -0.023517 0.012216 -1.925 0.06523 .
wt -3.428626 1.055455 -3.248 0.00319 **
cyl6 -3.466011 1.462979 -2.369 0.02554 *
cyl8 -3.753227 2.813996 -1.334 0.19385
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 2.482 on 26 degrees of freedom
Multiple R-squared: 0.8578, Adjusted R-squared: 0.8305
F-statistic: 31.37 on 5 and 26 DF, p-value: 3.18e-10

2. We will create a new dataframe for the data to be used for the prediction. And then, we
will run the predict() function.

# Make predictions for a new car with weight of 2.5,
# displacement of 200, horsepower of 100, six cylinders
new_car <- data.frame(wt = 2.5, disp = 200, hp = 100, cyl = 6)

# Convert cyl to a factor variable in the new data frame
new_car$cyl <- as.factor(new_car$cyl)

# Make the prediction based on the model using the predict() function
predict(model, newdata = new_car)

1
22.45295

2. In this example, we use summary() to review a multiple linear regression model. This
model was estimated using the lm() function, with mpg as the dependent variable and
wt, disp, hp, cyl as the independent variables.

3. The newdata argument specifies a data frame containing the values of the independent
variables for a new car having weight of 2.5, displacement of 200, horsepower of 100, and
6 cylinders,

4. The output of the predict() function informs us that the predicted value of mpg for the
new car, based on the fitted model, is 22.45295 mpg.
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6 Assumptions made in Ordinary Least
Squares (OLS) estimation

OLS estimation makes several assumptions, and violating these assumptions can lead to biased
or inefficient estimates of the regression coefficients. The following are the assumptions of OLS
regression:

1. Linearity:

The relationship between the dependent variable and independent variables is linear. This
means that the effect of a change in an independent variable on the dependent variable is
constant.

2. Independence:

The observations in the dataset are independent of each other. In other words, the value of
one observation does not depend on the value of another observation.

3. Homoscedasticity:

The variance of the error terms is constant across all values of the independent variables. This
assumption is also known as the assumption of constant variance.

4. Normality:

The error terms are normally distributed with a mean of zero. This means that the distribution
of the errors is symmetric and bell-shaped.
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5. No multicollinearity:

There is no perfect linear relationship among the independent variables. In other words, the
independent variables are not highly correlated with each other.

6. No outliers:

There are no extreme observations that are far away from the general pattern of the data.
Such outliers can have a large effect on the estimates of the regression coefficients.

It is important to check for these assumptions before using OLS regression, and there are
various methods to test for them. If any of these assumptions are violated, alternative methods
such as robust regression or non-parametric regression may be more appropriate. [8]
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Quadratic Regression

Overview

Quadratic regression is a form of multiple regression where the relationship between the in-
dependent variable (x) and the dependent variable (y) is modeled as a quadratic function.
This type of regression is used when the data suggests a parabolic relationship between the
variables, meaning the trend in the data increases or decreases at a non-constant rate.

The quadratic regression equation can be represented as:

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝜖 (0.1)

where:

𝑦 is the dependent variable,

𝑥 is the independent variable,

𝛽0 is the intercept of the model,

𝛽1 is the coefficient for the linear term,

𝛽2 is the coefficient for the quadratic term, and

𝜖 is the error term of the model.

The coefficients 𝛽0, 𝛽1, and 𝛽2 are estimated through the regression analysis, aiming to fit the
model such that it minimizes the sum of the squared differences between the observed and
predicted values.

Applying Quadratic Regression in R with the mtcars dataset

Let’s say we want to explore how the miles per gallon (mpg) of cars in the mtcars dataset is
related to the displacement (disp), which is the engine size. We hypothesize that there’s a
quadratic relationship between displacement and mpg.

Here’s a step-by-step guide on how to perform this analysis in R:
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1. Visualize the Data: Plot disp versus mpg to visually inspect the relationship.

2. Fit the Quadratic Model: Use the lm() function to fit a quadratic regression model.
We’ll include both the linear and quadratic terms of disp in the model.

3. Analyze the Results: Summarize the model to interpret the coefficients and assess
the fit.

Step 1: Visualize the Data

plot(mtcars$disp,
mtcars$mpg,
main="Mileage vs. Displacement",
xlab="Displacement (disp)",
ylab="Miles Per Gallon (mpg)",
pch=19)
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Step 2: Fit the Quadratic Model

The lm() function in R is used to fit a quadratic regression model by including both the linear
and quadratic terms of displacement.
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# Fit the quadratic regression model
model <- lm(mpg ~ disp + I(disp^2),

data=mtcars)

# Summarize the model to view coefficients and statistics
summary(model)

Call:
lm(formula = mpg ~ disp + I(disp^2), data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-3.9112 -1.5269 -0.3124 1.3489 5.3946

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.583e+01 2.209e+00 16.221 4.39e-16 ***
disp -1.053e-01 2.028e-02 -5.192 1.49e-05 ***
I(disp^2) 1.255e-04 3.891e-05 3.226 0.0031 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.837 on 29 degrees of freedom
Multiple R-squared: 0.7927, Adjusted R-squared: 0.7784
F-statistic: 55.46 on 2 and 29 DF, p-value: 1.229e-10

I(disp^2): The term I(disp^2) within the lm function call in R signifies the inclusion of a
quadratic term for the variable disp (engine displacement) in the regression model. The I()
function in R is used to indicate that disp^2 should be treated as a mathematical operation
inside the formula. Without I(), the ^ symbol could be misinterpreted by the formula interface.
In this context, I() ensures that disp is squared, and this squared term is then used as a
predictor in the model.

Step 3: Analysis

Here’s how we can write the resulting quadratic model:

mpg = 35.83 − 0.1053 × disp + 0.0001255 × disp2 + 𝜖

Here is how we can visualize it.
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# Initial plot
plot(mtcars$disp,

mtcars$mpg,
main="Mileage vs. Displacement",
xlab="Displacement (disp)",
ylab="Miles Per Gallon (mpg)",
pch=19)

# Fit a quadratic regression model
model <- lm(mpg ~ disp + I(disp^2),

data=mtcars)

# Add the quadratic curve to the plot
# The curve expression uses the coefficients from the model
curve(coef(model)[1] +

coef(model)[2]*x +
coef(model)[3]*x^2,

add = TRUE,
col = "red",
from=min(mtcars$disp), to=max(mtcars$disp))
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Coefficient for disp:

• Estimate: The estimate of (-0.1053) indicates the effect of the linear term of displace-
ment (disp) on miles per gallon (mpg). Specifically, for each one-unit increase in disp,
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mpg is expected to decrease by 0.1053 units, holding the effect of disp^2 constant. This
suggests a negative linear relationship between engine displacement and fuel efficiency.

• Std. Error: The standard error of the estimate is (0.02028), which measures the
accuracy of the coefficient estimate. A smaller standard error indicates a more precise
estimate of the coefficient.

• t value: The t statistic of (-5.192) is calculated by dividing the coefficient by its standard
error. The negative sign indicates a negative relationship between disp and mpg. The
magnitude of the t value suggests strong evidence against the null hypothesis (that the
coefficient is zero), indicating that disp is a significant predictor of mpg.

• Pr(>|t|): The p-value of (0.0000149) (or (1.49e-05)) is extremely small, far below the
typical significance level of (0.05), providing strong evidence against the null hypothesis.
This confirms that the linear term of displacement is significantly associated with mpg.

• Significance: The *** indicates a very high level of statistical significance for this
coefficient.

Coefficient for I(disp^2):

• Estimate: The estimate of (0.0001255) represents the effect of the quadratic term of
displacement (disp^2) on mpg. This suggests that as disp increases, the rate of change
in mpg also changes, specifically by an additional 0.0001255 units for each square unit
increase in disp. This captures the curvilinear relationship between displacement and
fuel efficiency.

• Std. Error: The standard error for this coefficient is (0.00003891), indicating the
precision of the quadratic term’s estimate.

• t value: The t statistic of (3.226) suggests that the quadratic term of displacement is a
significant predictor of mpg, with a positive coefficient indicating the shape of the curve
is concave up (the relationship between disp and mpg becomes less negative or more
positive as disp increases, after accounting for the linear term).

• Pr(>|t|): The p-value of (0.0031) indicates statistical significance, albeit less so than
the linear term, but still well below the (0.05) threshold, meaning the quadratic term
significantly contributes to the model.

• Significance: The ** indicates a high level of statistical significance for the quadratic
coefficient.

Both the linear and quadratic terms of engine displacement are significant predictors of fuel
efficiency in the mtcars dataset. The negative coefficient for disp indicates a general trend
of decreasing mpg with increasing disp, while the positive coefficient for disp^2 suggests that
this relationship is not purely linear but has a quadratic component, indicating a change in
the rate of decline of mpg as disp increases.

Residuals: Residuals are the differences between observed values and the values predicted by
the model. The summary statistics of residuals (Min, 1Q (first quartile), Median, 3Q (third
quartile), Max) suggest how well the model fits the data. Smaller residuals indicate a better
fit.
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Residual standard error: An estimate of the standard deviation of the residuals, which
gives a measure of the quality of the fit. Here, it’s 2.837, on 29 degrees of freedom.

Multiple R-squared: A measure of the proportion of variance in the dependent variable
(mpg) that is predictable from the independent variables (disp and I(disp^2)). Here, 0.7927
indicates that approximately 79.27% of the variability in mpg is explained by the model.

Adjusted R-squared: Adjusted for the number of predictors in the model, providing a more
accurate measure of the goodness of fit. 0.7784 is quite high, suggesting a good fit.

F-statistic and its p-value: Tests the overall significance of the model. A very small p-value
(1.229e-10) indicates that the model is statistically significant at explaining the variation in
mpg compared to a model with no predictors.

Step 3 (Alternate Scenario)

If the output from a quadratic regression on the mtcars dataset showed a significant linear
term (disp) but an insignificant quadratic term (I(disp^2)), the interpretation would change
as follows:

1. Dominant Linear Relationship: A significant linear term alongside an insignificant
quadratic term would suggest the relationship between engine displacement (disp) and
miles per gallon (mpg) is primarily linear. This would mean mpg changes at a constant
rate with changes in disp, without evident curvature.

2. Simpler Model Sufficiency: The insignificance of the quadratic term would imply that
a simpler linear model might be just as effective in describing the relationship between
disp and mpg, reducing the need for the added complexity of a quadratic term.

3. Coefficient Interpretation: With only the linear term significant, the coefficient for
disp could be understood as the change in mpg for every one-unit change in disp, without
considering curvature since the quadratic term doesn’t significantly contribute to the
model.

4. Modeling Implications: The lack of significance for the quadratic term could prompt
reconsideration of the model choice, suggesting perhaps a different variable or model type
could better capture the dynamics between disp and mpg. If the quadratic term isn’t
significant, it indicates a straight-line relationship between disp and mpg, questioning
the necessity of a quadratic model. This emphasizes evaluating model complexity against
the significance and practical relevance of the terms included.
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Step 3 (Alternate Scenario 2)

If the linear term (disp) was not significant but the quadratic term (I(disp^2)) was significant
in the regression analysis, the interpretation would change as follows:

1. Quadratic Relationship: The significance of the quadratic term over the linear term
would suggest a curvilinear relationship between engine displacement (disp) and miles
per gallon (mpg). This would imply that the effect of disp on mpg changes at different
levels of disp, not simply increasing or decreasing in a straight line.

2. Non-linear Dynamics: The model would indicate that the relationship between disp
and mpg cannot be adequately described by a linear model.

3. Model Complexity: A significant quadratic term with a non-significant linear term
would justify the complexity of including the quadratic term in the model. It would sug-
gest that understanding the relationship between disp and mpg requires acknowledging
the nonlinear dynamics.

4. Interpreting the Coefficient: With a significant quadratic term, the effect of disp
on mpg would be dependent on the value of disp itself, indicating the presence of an
acceleration or deceleration in the rate at which mpg changes with disp. It might also
suggest looking for a turning point in the relationship between disp and mpg, where the
effect of increasing displacement on fuel efficiency starts to change direction.

Comparing Models with / without Quadratic term

To compare the quadratic regression model with the base linear model (without the quadratic
term) for predicting miles per gallon (mpg) from engine displacement (disp) in the mtcars
dataset, let us run the base model (model0).

# Fit the regression model without quadratic term
model0 <- lm(mpg ~ disp,

data=mtcars)

# Summarize the model to view coefficients and statistics
summary(model0)

Call:
lm(formula = mpg ~ disp, data = mtcars)

Residuals:
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Min 1Q Median 3Q Max
-4.8922 -2.2022 -0.9631 1.6272 7.2305

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.599855 1.229720 24.070 < 2e-16 ***
disp -0.041215 0.004712 -8.747 9.38e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.251 on 30 degrees of freedom
Multiple R-squared: 0.7183, Adjusted R-squared: 0.709
F-statistic: 76.51 on 1 and 30 DF, p-value: 9.38e-10

Let us look at several key aspects based on the provided output for both models.

Base Model (Linear):

• Formula:
mpg = 29.60 − 0.0412 × disp + 𝜖

• Residual Standard Error (RSE): 3.251, indicating the average distance that the
observed values fall from the regression line.

• Multiple R-squared: 0.7183, meaning approximately 71.83% of the variability in mpg
is explained by the model.

• Adjusted R-squared: 0.709, slightly lower than the R-squared, adjusted for the num-
ber of predictors.

• F-statistic: 76.51, with a p-value of (9.38e-10), showing the model is statistically signif-
icant.

Model with Quadratic Term:

• Formula:
mpg = 35.83 − 0.1053 × disp + 0.0001255 × disp2 + 𝜖

• Residual Standard Error (RSE): 2.837, lower than the base model, suggesting a
better fit to the data.

• Multiple R-squared: 0.7927, indicating approximately 79.27% of the variability in mpg
is explained by this model, which is an improvement over the base model.
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• Adjusted R-squared: 0.7784, also higher than the base model, indicating a better fit
when the number of predictors is considered.

• F-statistic: 55.46 on 2 and 29 degrees of freedom, with a p-value of (1.229e-10), con-
firming statistical significance.

Comparison and Interpretation:

1. Fit Quality: The model with the quadratic term shows a lower Residual Standard
Error (RSE) and higher R-squared values, suggesting it provides a better fit to the data
compared to the base model. This indicates that adding the quadratic term captures
more of the variability in mpg.

2. Model Complexity: The quadratic model is more complex due to the additional term.
Despite this, the improvement in fit (as shown by the RSE and R-squared values) justifies
the increased complexity.

3. Statistical Significance: Both models are statistically significant, but the improvement
in the fit and explanatory power of the quadratic model suggests that the relationship
between disp and mpg is not strictly linear but has a curvilinear component.

Thus, the quadratic model provides a more accurate and nuanced understanding of how engine
displacement affects fuel efficiency, as indicated by its statistical metrics and the significant
quadratic term. This analysis demonstrates the value of exploring more complex models when
linear relationships do not fully capture the dynamics between variables.

Biquadratic model

We can fit a bi-quadratic regression model to the mtcars dataset in R. The following model
predicts miles per gallon (mpg) based on both the engine displacement (disp) and horsepower
(hp), including both their linear and quadratic terms.

Model Equation:

The model can be represented as:

mpg = 𝛽0 + 𝛽1 × disp + 𝛽2 × disp2 + 𝛽3 × hp + 𝛽4 × hp2 + 𝜖
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Implementation:

Here is R code to implement the model.

# Fit a bi-quadratic regression model
model2 <- lm(mpg ~ disp + I(disp^2) + hp + I(hp^2),

data=mtcars)

# Summarize the model to view coefficients and statistics
summary(model2)

Call:
lm(formula = mpg ~ disp + I(disp^2) + hp + I(hp^2), data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-3.7428 -1.6602 -0.4269 1.2525 5.3432

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.946e+01 2.892e+00 13.646 1.24e-13 ***
disp -6.968e-02 2.536e-02 -2.748 0.0106 *
I(disp^2) 8.653e-05 4.120e-05 2.100 0.0452 *
hp -9.864e-02 4.724e-02 -2.088 0.0464 *
I(hp^2) 2.026e-04 1.101e-04 1.840 0.0768 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.707 on 27 degrees of freedom
Multiple R-squared: 0.8243, Adjusted R-squared: 0.7982
F-statistic: 31.66 on 4 and 27 DF, p-value: 7.758e-10

Coefficients:

• Intercept (𝛽0): The model’s intercept is approximately 39.46, suggesting the expected
mpg when both disp and hp are 0.

• disp (𝛽1): The coefficient of $-0.06968$ for disp indicates that, holding other variables
constant, a one-unit increase in disp is associated with a decrease of about 0.06968 units
in mpg.

• I(disp^2) (𝛽2): The positive coefficient 0.00008653 for the quadratic term of disp
suggests that the effect of disp on mpg increases at a decreasing rate as disp increases.

39



• hp (𝛽3): The coefficient of $-0.09864$ for hp implies that, holding other variables
constant, a one-unit increase in hp is associated with a decrease of about 0.09864 units
in mpg.

• I(hp^2) (𝛽4): The coefficient 0.0002026 for the quadratic term of hp indicates that
the relationship between hp and mpg also increases at a decreasing rate as hp increases,
though this effect is less statistically significant (p = 0.0768) than the linear terms.

Significance:

• The asterisks (*, .) next to the coefficients denote their level of statistical significance,
with more * indicating higher significance. All variables except for I(hp^2) are statis-
tically significant at the 𝑝 < 0.05 level, suggesting they have a meaningful contribution
to the model. I(hp^2) is close to significance, suggesting a possible quadratic effect of
horsepower on mpg.

Model Fit:

• Residual Standard Error: 2.707 on 27 degrees of freedom, indicating the standard
deviation of the residuals.

• Multiple R-squared: 0.8243, implying that approximately 82.43% of the variability in
mpg is explained by the model, which is a strong fit.

• Adjusted R-squared: 0.7982, adjusted for the number of predictors, also indicates a
good fit.

• F-statistic: 31.66 on 4 and 27 DF, with a p-value of 7.758𝑒 − 10, strongly suggests the
model is statistically significant.

Interpretation:

This bi-quadratic model suggests a complex relationship between mpg and both disp and hp,
incorporating the effects of engine displacement and horsepower not just linearly but also how
these effects change as disp and hp increase. The model’s high (R^2) values and significant
F-statistic indicate a strong fit, capturing a significant portion of the variability in mpg.
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