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A regression model with an interaction term allows us to examine how the relationship between
the outcome variable and one predictor variable changes depending on the level of another
predictor variable. It is a useful tool for modeling complex relationships between predictor
variables and outcome variables.

Example 1

1. Suppose we are interested in the relationship between a person’s age (predictor variable
1) and their income (response variable), and we also like to determine whether the effect
of age on income varies for men and women (predictor variable 2).

2. This relationship can be modeled using a linear regression model with an interaction
term:

𝐼𝑛𝑐𝑜𝑚𝑒 = 𝛽0 + 𝛽1(𝑎𝑔𝑒) + 𝛽2(𝑔𝑒𝑛𝑑𝑒𝑟) + 𝛽3(𝑎𝑔𝑒 ∗ 𝑔𝑒𝑛𝑑𝑒𝑟) + 𝜀

3. In this model, the 𝛽1 coefficient represents the effect of age on income when gender is
held constant, the 𝛽2 coefficient represents the effect of gender on income when age is
held constant, and the 𝛽3 coefficient represents the effect of the interaction between age
and gender on income.

4. The interaction term 𝛽3 captures how the relationship between age and income differs
for men and women.

5. If 𝛽3 is positive, it means that the effect of age on income is stronger for one gender
compared to the other, and if 𝛽3 is negative, it means that the effect of age on income is
weaker for one gender compared to the other.

Example 2

1. Suppose we have a model that predicts a person’s Income based on their education level
and years of experience.
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2. In a model without an interaction term, we assume that the effect of education level on
Income is constant across all levels of years of experience.

𝐼𝑛𝑐𝑜𝑚𝑒 = 𝛽0 + 𝛽1(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) + 𝛽2(𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒) + 𝜀

3. However, in reality, the effect of education level on Income may depend on the level of
years of experience. For instance, the positive effect of education level on Income may
be stronger for people with less experience than for people with more experience.

4. By including an interaction term in the model, we can allow the effect of one predictor
variable (e.g., education level) to vary depending on the level of another predictor variable
(e.g., years of experience).

𝐼𝑛𝑐𝑜𝑚𝑒 = 𝛽0 + 𝛽1(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) + 𝛽2(𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒) + 𝛽3(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 ∗ 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒) + 𝜀

5. This enables us to better capture the complexity of the relationship between the predictor
variables and the outcome variable. [1]

Business Applications of Linear Regression with Interaction

Marketing

1. Segmentation analysis: Linear regression with interaction can be used to identify
subgroups of customers with different preferences or behaviors. For example, a marketer
may want to know how the relationship between a product attribute (e.g., price, quality,
features) and customer satisfaction varies across different customer segments (e.g., age,
gender, income, location). By estimating separate regression models for each segment
and comparing the coefficients and fit statistics, the marketer can identify the key drivers
of satisfaction for each segment and tailor the marketing mix accordingly.

2. Product optimization: Linear regression with interaction can also be used to optimize
the design and pricing of a product or service. By modeling the relationship between the
product attributes and customer preferences, and incorporating the interaction effects,
the marketer can identify the optimal levels of each attribute that maximize customer
satisfaction or purchase intention. For example, a marketer may want to know how the
price and quality of a product interact to affect the customer’s willingness to pay or
repurchase. By estimating a regression model with an interaction term, the marketer
can identify the price-quality tradeoff and the price point that maximizes the profit.
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3. Campaign targeting: Linear regression with interaction can also be used to improve
the targeting and personalization of marketing campaigns. By modeling the relationship
between the customer characteristics and response to different marketing messages, and
incorporating the interaction effects, the marketer can identify the most effective mes-
sages for each customer segment. For example, a marketer may want to know how the
age and gender of a customer interact to affect the response to a promotional offer. By
estimating a regression model with an interaction term, the marketer can identify the
customer segments that are most responsive to the offer and tailor the offer accordingly.

4. Sales forecasting: Linear regression with interaction can also be used to forecast the
sales of a product or service. By modeling the relationship between the sales and the
explanatory variables, and incorporating the interaction effects, the marketer can identify
the factors that influence the sales and predict the future demand. For example, a
marketer may want to know how the advertising expenditure and the seasonality interact
to affect the sales of a product. By estimating a regression model with an interaction
term, the marketer can identify the optimal timing and allocation of the advertising
budget and forecast the sales for different periods. [2]

Finance

1. Asset pricing models: Linear regression with interaction has been used to estimate
asset pricing models, such as the Capital Asset Pricing Model (CAPM) and the Fama-
French Three-Factor Model, that explain the variation in stock returns based on market
risk, size, value, and other factors that interact with each other (Fama & French, 1992;
Sharpe, 1964).

2. Risk management models: Linear regression with interaction has been used to model
the joint distribution of multiple risk factors and to estimate Value-at-Risk (VaR) and
Conditional Value-at-Risk (CVaR) measures that capture the tail risks and dependencies
of portfolios and derivatives (Jorion, 2006; McNeil, Frey, & Embrechts, 2015).

3. Credit scoring models: Linear regression with interaction has been used to model
the creditworthiness of borrowers based on their personal and financial characteristics
and their interactions, and to estimate credit scores that predict the likelihood of default
and the expected losses of loans and bonds (Altman & Sabato, 2007; Thomas, Crook, &
Edelman, 2002).

4. Event studies: Linear regression with interaction has been used to model the abnor-
mal returns of stocks and bonds around corporate events, such as mergers, acquisitions,
earnings announcements, and dividend changes, and to test the hypotheses of market
efficiency, information asymmetry, and behavioral biases (Brown & Warner, 1985; Fama,
1970; Lakonishok & Vermaelen, 1986).
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5. Forecasting models: Linear regression with interaction has been used to forecast the
future values of financial variables, such as stock prices, exchange rates, interest rates,
and commodity prices, based on their past values, their interactions with other variables,
and the market conditions that affect them (Elliott, Timmermann, & Stock, 1996; West,
2006). [3]

Organizational Behavior

1. Organizational effectiveness: Linear regression with interaction can be used to study
the interaction effects of different factors on organizational effectiveness. For example,
a study by Aryee and Chen (2006) found that the relationship between organizational
justice and organizational citizenship behavior was stronger among employees who had
high levels of trust in their supervisors.

2. Employee engagement: Linear regression with interaction can be used to study the
interaction effects of different factors on employee engagement. For example, a study by
Kim, Lee, and Chun (2015) found that the relationship between job autonomy and em-
ployee engagement was stronger among employees who had high levels of social support
from their coworkers.

3. Leadership effectiveness: Linear regression with interaction can be used to study the
interaction effects of different leadership styles on leadership effectiveness. For example, a
study by Howell and Avolio (1993) found that the relationship between transformational
leadership and follower satisfaction was stronger among followers who had low levels of
organizational structure. [4]
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Linear Regression with Interaction

Model

1. A linear regression model with an interaction term is a statistical model that allows us
to explore how the relationship between a predictor variable and a response variable
changes depending on the level of another predictor variable.

2. In this type of model, the relationship between the response variable and each predictor
variable is assumed to be linear.

3. The interaction term is included in the model to capture the effect of the interaction
between two or more predictor variables on the response variable. The interaction term
represents the product of the values of the two predictor variables that are being inter-
acted with each other.

4. The regression equation for a model with an interaction term between two predictor
variables can be expressed as follows:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1𝑋2 + 𝜀

• 𝑌 is the outcome variable.

• 𝑋1 and 𝑋2 are the two predictor variables.

• 𝛽0 is the intercept coefficient, which represents the expected value of 𝑌 when both 𝑋1
and 𝑋2 are zero.

• 𝛽1 is the coefficient for 𝑋1, which represents the change in 𝑌 for a one-unit increase in
𝑋1 when 𝑋2 is held constant.

• 𝛽2 is the coefficient for 𝑋2, which represents the change in 𝑌 for a one-unit increase in
𝑋2 when 𝑋1 is held constant.

• 𝛽3 is the coefficient for the interaction term 𝑋1𝑋2, which represents the change in the
effect of 𝑋1 on 𝑌 for a one-unit increase in 𝑋2. In other words, it represents the difference
in the slope of the relationship between 𝑋1 and 𝑌 at different levels of 𝑋2.

• 𝜀 is the error term, which represents the random variation in 𝑌 that is not explained by
the predictor variables.
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5. The interaction term 𝑋1𝑋2 captures the degree to which the relationship between 𝑋1
and 𝑌 depends on the level of 𝑋2.

• If 𝛽3 is positive, it means that the effect of 𝑋1 on 𝑌 increases as 𝑋2 increases.

• If 𝛽3 is negative, it means that the effect of 𝑋1 on 𝑌 decreases as 𝑋2 increases.

• If 𝛽3 is zero, it means that there is no interaction between 𝑋1 and 𝑋2, and the effect of
𝑋1 on 𝑌 is constant across all levels of 𝑋2.

6. The regression equation can be used to estimate the expected value of 𝑌 for a given
combination of 𝑋1 and 𝑋2, as well as to test the significance of the coefficients and the
overall fit of the model. [5]

Example 1: Linear Regression with Interaction in R

1. In this example, we will create a model to predict the miles per gallon (mpg) of a car
based on its weight (wt) and whether it has an automatic (am=0) or manual transmission
(am=1):

data(mtcars)
# Convert am to a factor variable
mtcars$am <- as.factor(mtcars$am)

# fit a linear regression model with interaction
model <- lm(mpg ~ wt * am,

data = mtcars)

# print the model summary
summary(model)

Call:
lm(formula = mpg ~ wt * am, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-3.6004 -1.5446 -0.5325 0.9012 6.0909

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 31.4161 3.0201 10.402 4.00e-11 ***
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wt -3.7859 0.7856 -4.819 4.55e-05 ***
am1 14.8784 4.2640 3.489 0.00162 **
wt:am1 -5.2984 1.4447 -3.667 0.00102 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.591 on 28 degrees of freedom
Multiple R-squared: 0.833, Adjusted R-squared: 0.8151
F-statistic: 46.57 on 3 and 28 DF, p-value: 5.209e-11

2. We use the lm() function to create the regression model.

3. The * operator is used to include an interaction term between wt and am.

4. View the summary of the model by running summary(model). This displays the coeffi-
cients for each variable in the model, as well as the interaction term.

5. The output shows the summary statistics for the residuals (i.e., the difference between
the predicted values and the actual values of the response variable). The minimum and
maximum values of the residuals are shown, as well as the first quartile (1Q), median,
and third quartile (3Q) values.

6. It also displays the estimates of the regression beta coefficients, which represent the
average change in the response variable (mpg), each associated with a one-unit increase
in the predictor variable, while holding all other variables constant.

• The intercept coefficient represents the predicted average mpg when weight is 0 and
am is 0 (i.e., for automatic transmission). In this case, the intercept is 31.4161,
meaning that the predicted average mpg for cars with automatic transmission and
weight 0 is 31.4161.

• The weight coefficient (wt) represents the predicted change in average mpg for a one-
unit increase in weight, while holding am constant. In this case, the weight coefficient
is -3.7859, meaning that for every one-unit increase in weight, the predicted average
mpg decreases by 3.7859 units.

• The am1 coefficient represents the difference in average mpg between cars with
manual transmission (am=1) and automatic transmission (am=0), while holding
weight constant. In this case, the am1 coefficient is 14.8784, meaning that the
predicted average mpg for cars with manual transmission is 14.8784 units higher
than the predicted average mpg for cars with automatic transmission, while holding
weight constant.

• The wt:am1 coefficient represents the interaction effect between weight and trans-
mission type. In this case, the wt:am1 coefficient is -5.2984, meaning that the
effect of wt on mpg depends on the transmission type, and the effect is significant
(i.e., the p-value is less than 0.05).
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7. Residual standard error: This is an estimate of the standard deviation of the errors
(residuals). In this case, the residual standard error is 2.591, meaning that the model’s
predictions are typically off by about 2.591 mpg.

8. Multiple R-squared: 0.833, Adjusted R-squared: 0.8151

As a reference benchmark, we can run the model WITHOUT the interaction
term.

data(mtcars)
# Convert am to a factor variable
mtcars$am <- as.factor(mtcars$am)

# Optional code to change the labels of the factor variable, if necessary
# mtcars$am <- factor(mtcars$am, labels = c("Automatic", "Manual"))

# Fit a linear regression model without an interaction term
model0 <- lm(mpg ~ wt + am,

data = mtcars)

# Display the summary of the model
summary(model0)

Call:
lm(formula = mpg ~ wt + am, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.5295 -2.3619 -0.1317 1.4025 6.8782

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.32155 3.05464 12.218 5.84e-13 ***
wt -5.35281 0.78824 -6.791 1.87e-07 ***
am1 -0.02362 1.54565 -0.015 0.988
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.098 on 29 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7358
F-statistic: 44.17 on 2 and 29 DF, p-value: 1.579e-09
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1. As we can see, the model output now only has three coefficients, corresponding to the
intercept, weight (wt), and transmission type (am).

2. The output shows that there is no significant difference in average mpg between cars with
automatic and manual transmission types (p > 0.05), after controlling for weight.

3. The other coefficients are interpreted in the same way as before.
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Example 2: Linear Regression with Interaction in R

1. In this example, we will create a model to predict the miles per gallon (mpg) of a car
based on its weight (wt) and the number of cylinders (cyl) in the engine.

2. Specifically, the number of cylinders in car engines are known to have either four, six
or eight cylinders. Therefore, we will model cylinders (cyl) as a factor variables having
three levels (cyl=4, cyl=6, cyl=8)

3. Here is the R code

data(mtcars)
# Convert cyl to a factor variable
mtcars$cyl <- factor(mtcars$cyl)

# Fit a linear regression model with interaction between wt and cyl
model1 <- lm(mpg ~ wt * cyl,

data = mtcars)

# Display the summary of the model
summary(model1)

Call:
lm(formula = mpg ~ wt * cyl, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.1513 -1.3798 -0.6389 1.4938 5.2523

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.571 3.194 12.389 2.06e-12 ***
wt -5.647 1.359 -4.154 0.000313 ***
cyl6 -11.162 9.355 -1.193 0.243584
cyl8 -15.703 4.839 -3.245 0.003223 **
wt:cyl6 2.867 3.117 0.920 0.366199
wt:cyl8 3.455 1.627 2.123 0.043440 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.449 on 26 degrees of freedom
Multiple R-squared: 0.8616, Adjusted R-squared: 0.8349
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F-statistic: 32.36 on 5 and 26 DF, p-value: 2.258e-10

In this model, we are regressing mpg on the main effects of wt and cyl, as well as the interaction
term wt:cyl.

• Residuals: This shows the residuals of the model, which are the differences between
the observed mpg values and the predicted mpg values from the model. The minimum
residual is -4.1513, the maximum residual is 5.2523, and the median residual is -0.6389.

• Coefficients: This table shows the estimated coefficients of the linear regression model.
The Estimate column shows the estimated effect of each variable on mpg, while the Std.
Error column shows the standard error of each estimate. The t value column shows
the t-value for each coefficient, which is calculated by dividing the estimated effect by
its standard error.

• The Pr(>|t|) column shows the p-value for the t-test of each coefficient. If the p-value
is less than 0.05, we can reject the null hypothesis that the coefficient is equal to zero,
and conclude that the variable has a significant effect on mpg.

• (Intercept): This is the intercept of the model, which represents the expected value of
mpg when all other variables are zero.

• wt: This coefficient represents the effect of weight (wt) on mpg, holding the number of
cylinders constant. The estimated effect is negative (-5.647), indicating that as weight
increases, mpg tends to decrease.

• cyl6 and cyl8: These coefficients represent the effect of the number of cylinders on mpg,
holding weight constant. The coefficients indicate that there is no significant effect of
having 6 cylinders on mpg, but having 8 cylinders is associated with a significant decrease
in mpg (-15.703).

• wt:cyl6 and wt:cyl8: These coefficients represent the effect of the interaction between
weight and number of cylinders.

• The intercept represents the expected value of mpg when all predictor variables are zero,
which is not a meaningful interpretation in this case.

• The coefficients for wt, cyl6, and cyl8 represent the expected change in mpg associated
with a one-unit increase in each of these variables, while holding all other variables
constant.

• The coefficients for the interaction terms wt:cyl6 and wt:cyl8 represent the expected
change in the effect of wt on mpg associated with a one-unit increase in wt, for cars with
6 and 8 cylinders, respectively.

• A coefficient that is significantly different from zero (indicated by a * or multiple * next
to the p-value) suggests that the corresponding predictor variable has a significant effect
on mpg.
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As a reference benchmark, we can run the model without the interaction term.

1. Here’s the R code for regressing mpg on wt and cyl (without an interaction term), after
converting cyl to a factor variable using the mtcars dataset:

# Load the mtcars dataset
data(mtcars)

# Convert cyl to a factor variable
mtcars$cyl <- factor(mtcars$cyl)

# Fit a linear regression model WITHOUT interaction between wt and cyl
model1 <- lm(mpg ~ wt + cyl, data = mtcars)

# Display the summary of the model
summary(model1)

Call:
lm(formula = mpg ~ wt + cyl, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.5890 -1.2357 -0.5159 1.3845 5.7915

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.9908 1.8878 18.006 < 2e-16 ***
wt -3.2056 0.7539 -4.252 0.000213 ***
cyl6 -4.2556 1.3861 -3.070 0.004718 **
cyl8 -6.0709 1.6523 -3.674 0.000999 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.557 on 28 degrees of freedom
Multiple R-squared: 0.8374, Adjusted R-squared: 0.82
F-statistic: 48.08 on 3 and 28 DF, p-value: 3.594e-11

2. In this model, we have regressed mpg on wt and cyl without including an interaction
term between them.

3. The output shows that both wt and cyl8 have a statistically significant negative effect
on mpg, while cyl6 does not have a statistically significant effect at the 0.05 significance
level.
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4. Specifically, a one-unit increase in wt is associated with a 5.647 decrease in mpg, holding
cyl constant. Similarly, cars with 8 cylinders have -15.703 lower mpg compared to cars
with 4 cylinders, holding wt constant.

5. The model explains 83.49% of the variability in mpg, as indicated by the Adjusted R-
squared value. The F-statistic of 32.36 and its associated p-value of 2.258e-10 suggest
that the overall model is statistically significant.

Comparison:

1. The first model (mpg ~ wt * cyl) includes an interaction term between wt and cyl,
while the second model (mpg ~ wt + cyl) does not.

2. Comparing the two models, we can see that the first model includes an interaction term
between wt and cyl, which allows the effect of wt on mpg to vary across different levels
of cyl. Specifically, the model shows that the effect of wt on mpg is more negative for
cars with 6 cylinders than for cars with 4 or 8 cylinders.

3. On the other hand, the second model assumes that the effect of wt on mpg is the same
across all levels of cyl. This means that the second model is more parsimonious than
the first model, as it has fewer parameters to estimate. However, it may not capture the
full complexity of the relationship between wt, cyl, and mpg.

4. In terms of model fit, the first model (mpg ~ wt * cyl) has a slightly higher adjusted
R-squared value (0.8349) compared to the second model’s adjusted R-squared (0.8349).
This suggests that the first model explains a slightly larger proportion of the variability
in mpg compared to the second model. However, the difference in adjusted R-squared
values is relatively small, and both models have a high degree of explanatory power.

Example 3: Linear Regression with Interaction in R

1. In this example, we will create a model to predict the miles per gallon (mpg) of a car
based on its weight (wt) and the horsepower (hp) of the engine.

2. Specifically, both the explanatory variables weight (wt) and horsepower are continuous
variables.

3. Here is the R code

data(mtcars)

# Fit a linear regression model with interaction between wt and hp
model3 <- lm(mpg ~ wt * hp,

data = mtcars)
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# Display the summary of the model
summary(model3)

Call:
lm(formula = mpg ~ wt * hp, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-3.0632 -1.6491 -0.7362 1.4211 4.5513

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.80842 3.60516 13.816 5.01e-14 ***
wt -8.21662 1.26971 -6.471 5.20e-07 ***
hp -0.12010 0.02470 -4.863 4.04e-05 ***
wt:hp 0.02785 0.00742 3.753 0.000811 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.153 on 28 degrees of freedom
Multiple R-squared: 0.8848, Adjusted R-squared: 0.8724
F-statistic: 71.66 on 3 and 28 DF, p-value: 2.981e-13

Coefficients

This section lists the estimated coefficients for the intercept, wt, hp, and the interaction term
wt:hp, along with their standard errors, t-values, and p-values.

Intercept (49.80842)

• This is the expected value of mpg when both wt and hp are 0. Since it’s not practical
for wt and hp to be 0 in real-world scenarios, the intercept here is more of a statistical
artifact rather than something with a practical interpretation.

Main Effects

• wt (-8.21662): This coefficient represents the change in mpg for a one-unit increase in
wt (weight of the car), holding hp (horsepower) constant. Specifically, for each 1,000 lbs
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increase in weight, mpg is expected to decrease by about 8.22 miles per gallon, assuming
the interaction effect remains constant.

• hp (-0.12010): This coefficient shows the change in mpg for a one-unit increase in hp,
holding wt constant. For each additional horsepower, mpg is expected to decrease by
about 0.12 miles per gallon, assuming the interaction effect remains constant.

Interaction Term (wt:hp 0.02785)

• The interaction term indicates how the effect of one predictor on the response variable
changes as the value of the other predictor changes. In this case, the positive coefficient
(0.02785) for the wt:hp interaction suggests that the negative impact of increasing wt
on mpg becomes less negative (or more positive) as hp increases. Similarly, the negative
impact of increasing hp on mpg becomes less negative as wt increases.

• To put it another way, the interaction term suggests that the relationship between wt
and mpg is not constant but varies depending on the level of hp, and vice versa. The
positive sign indicates that heavier cars with more horsepower have a smaller decrease
in fuel efficiency than would be expected by simply considering the main effects of wt
and hp separately.

Residuals

Residuals are the differences between observed values of the dependent variable (mpg) and the
values predicted by the model. The summary statistics of residuals (minimum, 1st quartile,
median, 3rd quartile, maximum) help assess the goodness of fit. Ideally, residuals should
be symmetrically distributed around zero, indicating that the model doesn’t systematically
underpredict or overpredict across the range of data.

Residual Standard Error

The residual standard error (RSE) of 2.153 on 28 degrees of freedom indicates the average
amount by which the observed values deviate from the values predicted by the model. Lower
values indicate a better fit.

R-squared values

• Multiple R-squared: 0.8848: This indicates that about 88.48% of the variability in
mpg can be explained by the model, which is quite high.
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• Adjusted R-squared: 0.8724: This is a modification of the R-squared that adjusts
for the number of predictors in the model. It’s slightly lower than the R-squared, which
is expected, but still indicates a good fit.

F-statistic

The F-statistic of 71.66 with a p-value of 2.981e-13 tests the overall significance of the model.
A very small p-value here (< 0.05) indicates that at least one of the predictors (wt, hp, or the
interaction wt:hp) is likely to have a non-zero coefficient, meaning the model is significant.

As a reference benchmark, we can run the model without the interaction term.

Here’s the R code for regressing mpg on wt and hp (without an interaction term):

data(mtcars)

# Fit a linear regression model WITHOUT interaction between wt and hp
model4 <- lm(mpg ~ wt + hp,

data = mtcars)

# Display the summary of the model
summary(model4)

Call:
lm(formula = mpg ~ wt + hp, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-3.941 -1.600 -0.182 1.050 5.854

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.22727 1.59879 23.285 < 2e-16 ***
wt -3.87783 0.63273 -6.129 1.12e-06 ***
hp -0.03177 0.00903 -3.519 0.00145 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.593 on 29 degrees of freedom
Multiple R-squared: 0.8268, Adjusted R-squared: 0.8148
F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12
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To compare the models, let’s look at the key differences between the model with the interaction
term and the one without it

Coefficients and Their Significance

• The coefficients for wt and hp in model3 are significantly different when the interaction
is included, reflecting the complexity added by considering the interaction. In model4,
the coefficients suggest a simpler relationship.

• The interaction model (model3) indicates a nuanced relationship where the effect of one
variable depends on the level of the other. This is missing in model4, which might lead
to less accurate predictions for combinations of wt and hp where the interaction effect is
strong.

Model Fit and Predictive Power

• R-squared: model3 has a higher R-squared (0.8848) compared to model4 (0.8268),
indicating that including the interaction term explains a higher proportion of variance
in mpg. This suggests a better overall fit to the data.

• Adjusted R-squared: Reflecting the number of predictors and the sample size, model3
also shows a higher adjusted R-squared (0.8724 vs. 0.8148), confirming that despite the
complexity added by the interaction term, the model’s explanatory power improves.

• Residual Standard Error: model3 has a lower residual standard error compared to
model4 (2.153 vs. 2.593), indicating that predictions from the interaction model are, on
average, closer to the observed values.

Statistical Significance

• Both models show statistical significance overall (based on F-statistics and their p-values),
but the interaction model provides a more nuanced understanding by highlighting the
significant role of the interaction between wt and hp.

Including an interaction term in a regression model, as seen in model3, can uncover more
complex relationships between predictors and the response variable that are not apparent
when predictors are considered independently, as in model4. The interaction model has a
better fit and predictive power for the mtcars dataset, as evidenced by the higher R-squared,
lower residual standard error, and the significance of the interaction term. This suggests that
the decrease in mpg due to increases in wt and hp is not simply additive; rather, it depends on
the combined effect of these two variables.
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