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Overview

Log-log regression is a statistical technique used to model the relationship between a depen-
dent variable and one or more independent variables, where both the dependent and the
independent variables undergo logarithmic transformations. This method is particularly effec-
tive for examining multiplicative relationships and elasticities between variables that exhibit
exponential growth or decline.

Purpose

• Elasticity Analysis: Log-log regression is commonly employed to analyze the elasticity
of a variable, which is useful for understanding how percentage changes in one variable
are associated with percentage changes in another.

• Scale Invariance: The logarithmic transformation of both dependent and indepen-
dent variables helps in handling data across different scales and makes the model scale-
invariant.

Business Applications of Log-Log Regression

Marketing

The following are some marketing applications of log-log regression:

Price Elasticity: Log-log regression can be used to estimate the price elasticity of a product’s
demand. A linear relationship can be depicted between the log of the quantity demanded
and the log of the price by taking the natural logarithm of both the dependent and inde-
pendent variables. The estimated price elasticity of demand can be used to inform pricing
strategies and maximize revenue for businesses.
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Advertising Effectiveness: The effect of advertising on sales can be estimated using log-
log regression. A linear relationship can be modeled between the log of sales and the log
of advertising expenditure by taking the natural logarithm of both the dependent and in-
dependent variables. The estimated coefficient can be used to guide advertising expenditure
decisions and assist businesses in optimizing their marketing campaigns.

Brand Loyalty: Log-log regression can be utilized to estimate the impact of brand loyalty on
sales. A linear relationship can be modeled between the log of sales and the log of brand
loyalty by taking the natural logarithm of both the dependent and independent variables. The
estimated coefficient can be used to inform brand strategy decisions and assist businesses
in identifying market share expansion opportunities.

Market Segmentation Analysis: Log-log regression can be used to identify and analyze
market segments based on product attributes. A linear relationship can be modeled between
the log of the product attribute and the log of market share by taking the natural logarithm
of both the dependent and independent variables. Estimates of the resulting coefficients can
be used to determine which product attributes are most essential to each market segment and
to inform decisions regarding product development. [2]

Finance

The following are some finance applications of log-log regression:

Asset Pricing Models: Log-log regression can be used to estimate asset pricing models,
such as the capital asset pricing model (CAPM). By taking the natural logarithm of both the
dependent and independent variables, a linear relationship can be modeled between the log of
the expected return and the log of the risk premium. The resulting coefficient estimate
can be used to inform investment decisions and help investors evaluate the risk and return of
a portfolio.

Risk Management: Log-log regression can be used to estimate risk models, such as value
at risk (VaR). By taking the natural logarithm of both the dependent and independent
variables, a linear relationship can be modeled between the log of the portfolio value and
the log of the portfolio risk. The resulting coefficient estimate can be used to estimate the
level of risk that the portfolio is exposed to and inform risk management decisions.

Option Pricing: Log-log regression can be used to estimate option pricing models, such as the
Black-Scholes model. By taking the natural logarithm of both the dependent and independent
variables, a linear relationship can be modeled between the log of the stock price and the
log of the option price. The resulting coefficient estimate can be used to inform option
pricing decisions and help investors evaluate the fair value of an option.

Credit Risk Analysis: Log-log regression can be used to estimate credit risk models, such
as the credit default swap (CDS) pricing model. By taking the natural logarithm of both
the dependent and independent variables, a linear relationship can be modeled between the
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log of the CDS spread and the log of the credit risk. The resulting coefficient estimate
can be used to inform credit risk analysis and help investors evaluate the creditworthiness
of a company. [3]

Organizational Behavior

The following are some applications of log-log regression in Organizational Behavior:

Analysis of Employee attrition: Log-log regression can be used to predict employee attri-
tion rates based on a variety of variables, including compensation, job satisfaction, and work
environment. A linear relationship can be modeled between the log of the employee turnover
rate and the log of the various factors by taking the natural logarithm of both the depen-
dent and independent variables. Estimates of the resulting coefficients can be used to identify
the most influential factors influencing employee attrition and inform strategies for employee
retention.

Analysis of Employee Performance: Log-log regression can be used to predict employee
performance based on a number of variables, including job training, work experience, and job
satisfaction. A linear relationship can be modeled between the log of employee performance
and the log of the various factors by taking the natural logarithm of both the dependent and
independent variables. The estimated coefficients can be used to determine the most influential
employee performance factors and to inform training and development strategies.

Organizational Culture Analysis: Analyzing the influence of organizational culture on
employee behavior and attitudes can be accomplished through the use of log-log regression.
By taking the natural logarithm of both the dependent and independent variables, it is possible
to construct a linear relationship between the log of employee behavior and attitudes and the
log of the different aspects of organizational culture. The estimated coefficients can be used
to determine the most influential aspects of organizational culture on employee conduct and
attitudes.

Leadership Effectiveness Analysis: Analyzing the influence of leadership on employee
behavior and performance can be accomplished using log-log regression. A linear relationship
can be modeled between the log of employee behavior and performance and the log of the vari-
ous leadership factors by taking the natural logarithm of both the dependent and independent
variables. The estimated coefficients can be used to identify the most influential leadership
factors on employee behavior and performance, as well as to inform leadership development
strategies. [4]
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Model

Model Form

The general form of a log-log regression model is represented by the following equation:

log(𝑌 ) = 𝛽0 + 𝛽1 log(𝑋1) + 𝛽2 log(𝑋2) + ... + 𝛽𝑛 log(𝑋𝑛) + 𝜖 (0.1)

where:

• 𝑌 is the dependent variable (after applying the logarithm).

• 𝑋1, 𝑋2, ..., 𝑋𝑛 are the independent variables (after applying logarithms to each).

• 𝛽0, 𝛽1, ..., 𝛽𝑛 are the coefficients that the regression model aims to estimate.

• 𝜀 is the error term.

Assumptions

Similar to other regression analyses, log-log regression relies on several assumptions:

• Linearity: The relationship between the log-transformed dependent and independent
variables is linear.

• Independence: Observations must be independent of each other.
• Homoscedasticity: The variance of error terms should be consistent across different

values of independent variables.
• Normal Distribution of Errors: Errors should follow a normal distribution for valid

hypothesis testing.

Advantages

• Interpretability of Elasticities: The coefficients in a log-log model represent the
elasticity between variables, providing insights into how a percentage change in one
variable affects another.

• Handling Non-linear Patterns: By transforming variables logarithmically, non-linear
relationships can be modeled linearly, enhancing the analysis of complex patterns.
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Disadvantages

• Zero Values Problem: Logarithmic transformation cannot be applied directly to zero
or negative values, which might require additional data adjustments or transformations.

• Interpretation Complexity: Understanding and interpreting elasticities might be
less straightforward compared to additive models, requiring a good grasp of logarithmic
relationships. [1]

Estimation

1. The natural logarithm transformation of both variables can help to capture non-linear
relationships, stabilize the data variance, and clarify the relationship between the vari-
ables. The coefficients 𝛽0 and 𝛽1 are elasticities that quantify the percentage change in
the dependent variable for a one percent change in the independent variable.

2. The method of least squares is used to minimize the sum of squared residuals
when estimating coefficients. This involves determining the values of 𝛽0 and 𝛽1 that
minimize the difference between the observed and predicted values of the dependent
variable. [5]

MODEL 1: Base Model

For reference and a point of comparison, we setup the same base model as the one used in the
previous chapter on Log-Linear Regression.

data(mtcars)
attach(mtcars)

Linear Regression

fit <- lm(mpg ~ wt, data = mtcars)
summary(fit)

Call:
lm(formula = mpg ~ wt, data = mtcars)

Residuals:
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Min 1Q Median 3Q Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
wt -5.3445 0.5591 -9.559 1.29e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

MODEL 2: Log-Log Model

Model 2 adopts a log-log regression approach to explore the relationship between the weight
(wt) of cars and their fuel efficiency (mpg). In contrast to a simple linear regression model that
predicts mpg directly from wt, this model predicts the logarithm of mpg from the logarithm of
wt. This double logarithmic transformation is particularly useful for examining how percentage
changes in vehicle weight influence percentage changes in fuel efficiency, reflecting an elasticity-
based relationship between these variables.

fit2 <- lm(log(mpg) ~ log(wt), data = mtcars)
summary(fit2)

Call:
lm(formula = log(mpg) ~ log(wt), data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-0.18141 -0.10681 -0.02125 0.08109 0.26930

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.90181 0.08790 44.39 < 2e-16 ***
log(wt) -0.84182 0.07549 -11.15 3.41e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 0.1334 on 30 degrees of freedom
Multiple R-squared: 0.8056, Adjusted R-squared: 0.7992
F-statistic: 124.4 on 1 and 30 DF, p-value: 3.406e-12

Model Output and Interpretation

The results from our log-log regression model are explained below:

Residuals

The residuals, or the differences between observed and predicted values of log(mpg),
show a median close to zero (-0.02125), indicating that, on average, the model’s predictions
closely match the actual log values. The spread of residuals from the minimum (-0.18141)
to the maximum (0.26930) shows that most predictions fall within this range, suggesting a
reasonable model fit.

Model Fit

• Residual Standard Error (RSE): 0.1334 on 30 degrees of freedom indicates the
typical deviation of the predicted values from the actual values.

• Multiple R-squared (0.8056): About 80.56% of the variability in log(mpg) is ex-
plained by the model, indicating a strong fit.

• Adjusted R-squared (0.7992): This adjusted statistic accounts for the number of
predictors and still explains about 79.92% of the variability in log(mpg), supporting a
robust model.

• F-statistic (124.4): This high value and the corresponding very low p-value (3.406e-12)
affirm the overall significance of the model, demonstrating that the model fits the data
well and the variables are appropriate.

Coefficients

• Intercept (3.90181): This value represents the expected value of log(mpg) when
log(wt) equals zero. Since log(wt) equals zero when wt is 1 (not zero due to the nature
of logarithmic transformation), this intercept can be interpreted as the expected log of
mpg for a car with a weight of 1 unit.
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To find the fuel efficiency (mpg) of a car with a weight of 1 unit, we can use the intercept value
from the log-log regression model. The calculation involves converting log(mpg) back to mpg
using the exponential function:

mpg = 𝑒intercept = 𝑒3.90181

Evaluating this expression yields:

mpg = 49.49

This result indicates that the mpg for a car weighing 1 unit is approximately 49.49
miles per gallon.

• log(wt) Coefficient (-0.84182): This coefficient indicates the expected change in
log(mpg) for each one-unit increase in log(wt). Specifically, a one-unit increase in
log(wt) is associated with a decrease of 0.84182 in log(mpg). This negative
coefficient reflects a strong inverse relationship, suggesting that as car weight increases
on a logarithmic scale, fuel efficiency decreases.

In practical terms, a 1% increase in a car’s weight leads to an approximate 0.84182%
decrease in its fuel efficiency.

This is interpreted as the elasticity of mpg with respect to weight, indicating a highly
elastic relationship where small percentage changes in weight lead to substantial percentage
changes in mpg.

Therefore, the beta coefficient of -0.84182 indicates a strong negative elasticity, signifying that
increases in car weight have a substantial negative impact on fuel efficiency, all else being
constant.

In contrast, in the linear-linear model, the relationship was additive rather than
multiplicative, with each unit increase in weight reducing the mpg linearly by 0.27178
units.

Statistical Significance

In the log-log regression model, we conduct hypothesis testing for each coefficient separately
to assess their statistical significance in predicting the dependent variable, log(mpg). Here’s
how we define and interpret the tests for the intercept and log(wt):

• For the Intercept:

– Null Hypothesis (H0): The intercept is zero, suggesting it has no effect on
log(mpg) when all independent variables are zero (logarithmically speaking).
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– Alternative Hypothesis (H1): The intercept is not zero, indicating it does affect
log(mpg) and provides a baseline level of mpg when wt equals 1 unit (since log(1)
= 0).

– Result: Given that the p-value for the intercept is significantly below 0.05, we
reject the null hypothesis. This means there is strong statistical evidence that
the intercept is a significant contributor to the model, affecting the baseline mpg
calculation.

• For log(wt):

– Null Hypothesis (H0): The coefficient for log(wt) is zero, implying no relation-
ship between weight and mpg on a logarithmic scale.

– Alternative Hypothesis (H1): The coefficient for log(wt) is not zero, suggesting
that changes in weight have a significant effect on mpg.

– Result: The very low p-value associated with the log(wt) coefficient leads us
to reject the null hypothesis. This rejection provides substantial evidence that an
increase in weight significantly decreases mpg, affirming the predictive power of
log(wt) in the model.

The statistical tests confirm that both the baseline level of mpg and the effect of weight changes
are significant factors in the model.

Another Log-Log Model

We present two regression models, Model 3a (Linear-Linear Model) and Model 3b (Log-Log
Model), using the mtcars dataset. Both models aim to predict the miles per gallon (mpg)
of cars based on their weight (wt) and transmission type (am, with levels “Automatic” and
“Manual”).

MODEL 3a - Linear-Linear Model

# Convert am to a factor variable
mtcars$am <- factor(mtcars$am, labels = c("Automatic", "Manual"))

fit3a <- lm((mpg) ~ wt + am, data = mtcars)
summary(fit3a)

Call:
lm(formula = (mpg) ~ wt + am, data = mtcars)
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Residuals:
Min 1Q Median 3Q Max

-4.5295 -2.3619 -0.1317 1.4025 6.8782

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.32155 3.05464 12.218 5.84e-13 ***
wt -5.35281 0.78824 -6.791 1.87e-07 ***
amManual -0.02362 1.54565 -0.015 0.988
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.098 on 29 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7358
F-statistic: 44.17 on 2 and 29 DF, p-value: 1.579e-09

MODEL 3b: Another Log-Log Model

fit3b <- lm(log(mpg) ~ log(wt) + am, data = mtcars)
summary(fit3b)

Call:
lm(formula = log(mpg) ~ log(wt) + am, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-0.194110 -0.117056 -0.008833 0.071274 0.258052

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.04162 0.14480 27.911 < 2e-16 ***
log(wt) -0.93629 0.10822 -8.652 1.58e-09 ***
amManual -0.08329 0.06886 -1.210 0.236
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1324 on 29 degrees of freedom
Multiple R-squared: 0.815, Adjusted R-squared: 0.8022
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F-statistic: 63.87 on 2 and 29 DF, p-value: 2.369e-11

Model Output and Interpretation

The output from Model 3b highlights the relationship between the logarithm of miles per
gallon (mpg) and factors including the logarithm of car weight (wt) and transmission type (am).
Below, we detail the interpretation of the model’s results:

Residuals

• The residuals of the model show a median very close to zero (-0.008833) and are relatively
tightly distributed, ranging from -0.194110 to 0.258052. This tight clustering indicates
that the model predictions are generally close to the observed data, demonstrating a
good fit.

Coefficients

• Intercept (4.04162): The intercept, statistically highly significant with a p-value much
less than 0.05, represents the expected value of log(mpg) when log(wt) equals zero and
when the car has an automatic transmission. The high t-value (27.911) underlines its
statistical reliability. For practical purposes, this value can be interpreted as the expected
log of mpg for a hypothetically light car with a weight of 1 unit (since log(1) = 0) and
an automatic transmission.

• log(wt) Coefficient (-0.93629): The coefficient for log(wt) is negative, indicating
that as the weight of a car increases, its fuel efficiency decreases. The elasticity of mpg
with respect to weight is about -0.936, meaning that a 1% increase in weight leads to
roughly a 0.936% decrease in mpg. This relationship is statistically significant, with a
very low p-value (1.58e-09) and a strong t-value (-8.652), suggesting a strong and reliable
negative impact of weight on fuel efficiency.

• amManual (-0.08329): This coefficient is associated with cars having manual transmis-
sions compared to the baseline of automatic transmissions. The negative sign suggests
a decrease in fuel efficiency for manual compared to automatic, but this result is not
statistically significant (p-value = 0.236), indicated by a t-value of -1.210. It implies
that, after controlling for weight, the type of transmission (manual vs. automatic) does
not have a significant effect on the mpg in this dataset.
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